

Step algebras of quantum algebras of type A, B and D

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1996 J. Phys. A: Math. Gen. 29 1045 (http://iopscience.iop.org/0305-4470/29/5/018)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.71 The article was downloaded on 02/06/2010 at 04:09

Please note that terms and conditions apply.

Step algebras of quantum algebras of type A, B and D

Pekka Kekäläinen

University of Jyväskylä, Department of Mathematics, Seminaarinkatu 15, SF-40100, Finland

Received 2 June 1995

Abstract. We study the step algebras for the quantum algebras corresponding to the Lie algebra pairs $A_{n-1} \subset A_n$, $B_{n-1} \subset B_n$ and $D_{n-1} \subset D_n$.

1. Introduction

In [14] Mickelsson introduced the step algebra $S(\mathfrak{k}, \mathfrak{g})$ of the Lie algebra pair $(\mathfrak{k}, \mathfrak{g})$, where \mathfrak{k} is a semisimple Lie subalgebra of a finite-dimensional Lie algebra \mathfrak{g} . The theory of step algebras was later also developed by van den Hombergh [3] and Zhelobenko [19, 20]. Step algebra methods have been applied to the representation theory of semisimple Lie algebras [11, 5], Lie superalgebras [12] and Kac–Moody algebras [13].

A step algebra is defined by $S(\mathfrak{g}, \mathfrak{k}) = S'(\mathfrak{g}, \mathfrak{k})/U(\mathfrak{g})\mathfrak{k}_+$, where $S'(\mathfrak{g}, \mathfrak{k}) = \{u \in U(\mathfrak{g})|\mathfrak{k}_+u \subset U(\mathfrak{g})\mathfrak{k}_+\}$. Step algebras are useful for studying irreducible \mathfrak{k} -finite \mathfrak{g} -modules. g-module V is \mathfrak{k} -finite, if it is a direct sum of finite-dimensional \mathfrak{k} -modules. Let V^+ be the set of \mathfrak{k} -maximal vectors in V. Step algebra $S(\mathfrak{g}, \mathfrak{k})$ operates in V^+ in a natural way. One basic result in the theory of step algebras is the existence of a certain subalgebra $S_0(\mathfrak{g}, \mathfrak{k}) \subset S(\mathfrak{g}, \mathfrak{k})$, which generates the whole V^+ from a single $v \in V^+$.

In this paper we study the step algebras of q-deformations of the following Lie algebra pairs: $A_{n-1} \subset A_n$, $B_{n-1} \subset B_n$ and $D_{n-1} \subset D_n$. As the main result we prove the existence of the subalgebra $S_0(\mathfrak{g}, \mathfrak{k})$ in these q-deformed cases. Earlier in [6] we studied the step algebra of the q-deformation of the Lie algebra pair $\mathfrak{sl}(n-1) \subset \mathfrak{sl}(n)$.

2. Quantum algebra $U_q(\mathfrak{g})$

Let \mathfrak{g} be a simple complex Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra and $\{\alpha_1, \ldots, \alpha_n\} \subset \mathfrak{h}^*$ a basis of simple roots.

Let $(\cdot|\cdot)$ be the dual of the Killing form restricted to \mathfrak{h} and $(a_{ij})_{i,j=1}^n$, $a_{ij} = \langle \alpha_i | \alpha_j \rangle = 2(\alpha_i | \alpha_j)/(\alpha_j | \alpha_j)$, the Cartan matrix of \mathfrak{g} .

For $q \in \mathbb{C}^*$ let

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}} \qquad [n]_q! = [1]_q [2]_q \cdots [n]_q \qquad [0]_q! = 1$$
$$\begin{bmatrix} m \\ n \end{bmatrix}_q = \frac{[m]_q!}{[m - n]_q! [n]_q!}.$$

 $U_q(\mathfrak{g})$ is the associative algebra over \mathbb{C} generated by the elements $k_i^{\pm 1}$, e_i and f_i , $i = 1, \ldots, n$, with relations

$$k_i k_i^{-1} = k_i^{-1} k_i = 1$$
 $k_i k_j = k_j k_i$

0305-4470/96/051045+09\$19.50 © 1996 IOP Publishing Ltd

1045

P Kekäläinen

$$k_{i}e_{j}k_{i}^{-1} = q_{i}^{a_{ij}}e_{j} \qquad k_{i}f_{j}k_{i}^{-1} = q_{i}^{-a_{ij}}f_{j}$$

$$[e_{i}, f_{j}] = \delta_{ij}\frac{k_{i}^{2} - k_{i}^{-2}}{q_{i}^{2} - q_{i}^{-2}}$$

$$\sum_{\nu=0}^{1-a_{ij}}(-1)^{\nu} \begin{bmatrix} 1 - a_{ij} \\ \nu \end{bmatrix}_{q_{i}^{2}}e_{i}^{1-a_{ij}-\nu}e_{j}e_{i}^{\nu} = 0 \qquad i \neq j$$

$$\sum_{\nu=0}^{1-a_{ij}}(-1)^{\nu} \begin{bmatrix} 1 - a_{ij} \\ \nu \end{bmatrix}_{q_{i}^{2}}f_{i}^{1-a_{ij}-\nu}f_{j}f_{i}^{\nu} = 0 \qquad i \neq j$$

where $q_i = q^{(\alpha_i | \alpha_i)/2}$, so $q_i^{a_{ij}} = q_j^{a_{ji}} = q^{(\alpha_i | \alpha_j)}$. Quantum algebras were introduced by Drinfeld [2] and Jimbo [4].

 $U_q(\mathfrak{g})$ is a Hopf algebra with a coproduct $\Delta : U_q(\mathfrak{g}) \to U_q(\mathfrak{g}) \otimes U_q(\mathfrak{g})$ defined by $\Delta(k_i^{\pm 1}) = k_i^{\pm 1} \otimes k_i^{\pm 1} \qquad \Delta(e_i) = e_i \otimes 1 + k_i^{-2} \otimes e_i \qquad \Delta(f_i) = f_i \otimes k_i^2 + 1 \otimes f_i$ and a counit $\epsilon : U_q(\mathfrak{g}) \to \mathbb{C}$ and an antipode $S : U_q(\mathfrak{g}) \to U_q(\mathfrak{g})$ defined by

$$\epsilon(k_i) = \epsilon(k_i^{-1}) = 1 \qquad \epsilon(e_i) = \epsilon(f_i) = 0$$

$$S(k_i) = k_i^{-1} \qquad S(e_i) = -k_i^2 e_i \qquad S(f_i) = -f_i k_i^{-2}$$

Recall that Δ and ϵ (respectively S) extend to an algebra (anti) homomorphism of $U_q(\mathfrak{g})$. Let L (respectively R) be the left (respectively right) regular representation of $U_q(\mathfrak{g})$.

The adjoint representation of $U_q(\mathfrak{g})$ is defined by $\mathfrak{ad} = (L \otimes R)(\mathrm{Id} \otimes S)\Delta$.

From now on we assume that q is not a root of unity.

Notations.

Let $U_q(\mathfrak{g}_+) \subset U_q(\mathfrak{g})$ (respectively $U_q(\mathfrak{g}_-)$) be the subalgebra generated by the elements e_i (respectively f_i), i = 1, ..., n and $U_q(\mathfrak{h})$ the subalgebra generated by the elements $k_i^{\pm 1}$. Then $U_q(\mathfrak{h})$ is the algebra of Laurent polynomials in the indeterminates k_i .

For $\alpha = \sum_{i=1}^{n} l_i \alpha_i$, $l_i \in \mathbb{Z}$, set $k_{\alpha} = k_1^{l_1} \dots k_n^{l_n}$.

2.1. Verma modules

Let V be a $U_q(\mathfrak{g})$ -module (see [9, 17]). A vector $0 \neq v \in V$ is a weight vector of weight $\omega = (\omega_1, \ldots, \omega_n) \in (\mathbb{C}^*)^n$, if $k_i v = \omega_i v$ for all $i = 1, \ldots, n$. Such a ω generates a character $\omega : U_q(\mathfrak{h}) \to \mathbb{C}$. Now

$$V_{\omega} = \{ v \in V | k_i v = \omega_i v, \ i = 1, \dots, n \}$$

is the weight subspace corresponding to the weight ω . A vector $0 \neq v \in V_{\omega}$ is a highest weight vector if $e_i v = 0$ for all i = 1, ..., n. V is a highest weight module, if it is generated by a highest weight vector.

As in the theory of semisimple Lie algebras for each $\omega \in (\mathbb{C}^*)^n$ we can construct the Verma module $M(\omega)$ and the unique irreducible standard cyclic module $V(\omega)$ with highest weight ω .

For each $\lambda \in \mathfrak{h}^*$ we can construct a character $q^{\lambda} : U_q(\mathfrak{h}) \to \mathbb{C}$ by defining $q^{\lambda}(k_i) = q^{(\lambda \mid \alpha_i)}$. If V is an irreducible finite-dimensional $U_q(\mathfrak{g})$ -module, then it is a highest weight module with the highest weight $\omega = \epsilon \cdot q^{\lambda} = (\epsilon_1 q^{(\lambda \mid \alpha_1)}, \dots, \epsilon_n q^{(\lambda \mid \alpha_n)})$, where $\lambda \in \Lambda^+$ is a dominant integral weight of \mathfrak{g} , and $\epsilon_i^4 = 1$. We denote by Ω^+ the set of weights of this form. For any weight $\omega \in \Omega^+ V(\omega)$ is finite-dimensional. Furthermore $V(\epsilon \cdot q^{\lambda}) \cong V(q^{\lambda}) \otimes \mathbb{C}_{\epsilon}$, where \mathbb{C}_{ϵ} is a one-dimensional $U_q(\mathfrak{g})$ -module with the highest weight ϵ . Since $U_q(\mathfrak{g})$ is a Hopf algebra, we can (using Δ) define a $U_q(\mathfrak{g})$ -module structure on the tensor product of $U_q(\mathfrak{g})$ -modules.

1046

2.2. The Harish-Chandra theorem

Let us denote by $Z(\mathfrak{g})$ the centre of $U_q(\mathfrak{g})$. Let $v \in M(q^{\lambda})$ be a highest weight vector. Then for all $z \in Z(\mathfrak{g})$, zv is a highest weight vector with weight q^{λ} , so $zv = \chi_{\lambda}(z)v$, where $\chi_{\lambda} : Z(\mathfrak{g}) \to \mathbb{C}$ is an algebra homomorphism.

Let δ be the half sum of the positive roots of \mathfrak{g} and $W_{\mathfrak{g}}$ the Weyl group of \mathfrak{g} . Let \sim be the equivalence relation in \mathfrak{h}^* defined by: $\lambda \sim \mu \Leftrightarrow \exists w \in W_{\mathfrak{g}}$ such that $\lambda + \delta = w(\mu + \delta)$.

Now we can formulate the analogue of the Harish–Chandra theorem, see [15, 18].

Harish–Chandra theorem. If $\chi_{\lambda} = \chi_{\mu}$, then $\lambda \sim \mu$.

2.3. The Cartan–Weyl basis and the Poincaré–Birkhoff–Witt theorem

The system of positive roots $\Delta^{\mathfrak{g}}_+$ of \mathfrak{g} is normally ordered if each root which is a sum of other roots lies between its summands, and $\alpha < \beta$ if α is before β in the normal ordering.

The *q*-analogue of the Cartan–Weyl basis is constructed inductively in the following way [7]. Fix some normal ordering in $\Delta_{+}^{\mathfrak{g}}$. For a simple root α_i we define $e_{\alpha_i} = e_i$. For a non-simple root $\gamma = \alpha + \beta$, where $\alpha, \beta \in \Delta_{+}^{\mathfrak{g}}$ and $\alpha < \beta$ such that there are no other roots α' and β' between α and β for which $\gamma = \alpha' + \beta'$, we set

$$e_{\gamma} = [e_{\alpha}, e_{\beta}]_{q^2} \qquad e_{-\gamma} = [e_{-\beta}, e_{-\alpha}]_{q^{-2}}$$

if e_{α} and e_{β} are already constructed. Here $[e_{\alpha}, e_{\beta}]_q = e_{\alpha}e_{\beta} - q^{-(\alpha,\beta)}e_{\beta}e_{\alpha}$.

The q-analogues of the Cartan–Weyl generators satisfy commutation relations of the following form. For any $\gamma \in \Delta^{\mathfrak{g}}_+$

$$[e_{\gamma}, e_{-\gamma}] = a_{\gamma}(q) \frac{k_{\gamma}^2 - k_{-\gamma}^2}{q^2 - q^{-2}}.$$

For $\alpha, \beta \in \Delta^{\mathfrak{g}}_+, \alpha < \beta$

$$[e_{\alpha}, e_{\beta}]_{q^2} = \sum_{\alpha < \nu_1 < \dots < \nu_m < \beta} b_{l_i, \nu_i}(q) e_{\nu_1}^{l_1} e_{\nu_2}^{l_2} \dots e_{\nu_m}^{l_m}$$

where $\sum_{i} l_i v_i = \alpha + \beta$, and

$$[e_{\beta}, e_{-\alpha}] = \sum_{\substack{\nu_{1} < \dots < \nu_{m} < \alpha \\ \beta < \nu'_{1} < \dots < \nu'_{r}}} c_{l_{i}, \nu_{i}, l'_{i}, \nu'_{i}}(q, k_{\alpha}, k_{\beta}) e^{l_{m}}_{-\nu_{m}} \dots e^{l_{1}}_{-\nu_{1}} e^{l'_{1}}_{\nu'_{1}} \dots e^{l'_{r}}_{\nu'_{r}}$$

where $\sum_{i} (l'_i v'_i - l_i v_i) = \beta - \alpha$. The explicit form of the coefficients *a*, *b* and *c* in the rank two case can be found in [7].

Let $\Delta_{+}^{\mathfrak{g}} = \{\gamma_1, \ldots, \gamma_s\}$ be normally ordered. The monomials $e_{-\gamma_s}^{n_s} \ldots e_{-\gamma_1}^{n_1} e_{\gamma_1}^{m_1} \ldots e_{\gamma_s}^{m_s}$ $k_1^{l_1} \ldots k_n^{l_n}; n_i, m_i \in \mathbb{N}, k_i \in \mathbb{Z}$ form a Poincaré–Birkhoff–Witt basis for $U_q(\mathfrak{g})$, see [8, 10, 16].

3. Step algebra $S_q(\mathfrak{g}, \mathfrak{k})$

3.1. Cartan–Weyl generators

Let \mathfrak{g} be a Lie algebra of type A_n , B_n or D_n and $U_q(\mathfrak{k}) \subset U_q(\mathfrak{g})$ a subalgebra generated by the elements $k_i^{\pm 1}$, e_i and f_i , i = 2, ..., n. Then $U_q(\mathfrak{k})$ is a q-deformation of Lie algebra \mathfrak{k} of the type A_{n-1} , B_{n-1} and D_{n-1} , respectively.

Next we fix the normal ordering of the positive roots and Cartan–Weyl generators for these algebras. Let $\{\alpha_1, \ldots, \alpha_n\}$ be a set of simple roots of \mathfrak{g} ; the simple roots of subalgebra $\mathfrak{t} \subset \mathfrak{g}$ are $\{\alpha_2, \ldots, \alpha_n\}$.

In the case $\mathfrak{g} = A_n$ the positive roots are

$$\sum_{j=l}^k \alpha_j \qquad l\leqslant k.$$

We fix the normal ordering inductively by setting

$$A_2: \{\alpha_1, \alpha_1 + \alpha_2, \alpha_2\}$$

$$A_n: \{\alpha_1, \alpha_1 + \alpha_2, \dots, \alpha_1 + \alpha_2 + \dots + \alpha_n, \text{ normally ordered } A_{n-1}\}.$$

Cartan-Weyl generators are defined by

$$e_{\alpha_l+\cdots+\alpha_{k+1}}=[e_{\alpha_l+\cdots+\alpha_k},e_{\alpha_{k+1}}]_{q^2}.$$

The positive roots of $\mathfrak{g} = B_n$ are

$$\sum_{j=l}^{k-1} \alpha_j \qquad l < k \leqslant n+1$$
$$\sum_{j=l}^{k-1} \alpha_j + 2\sum_{j=k}^n \alpha_j \qquad l < k \leqslant n$$

and the normal ordering is defined as follows:

$$B_2: \{\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2, \alpha_2\}$$

$$B_n: \{\alpha_1, \alpha_1 + \alpha_2, \dots, \alpha_1 + \dots + \alpha_n, \alpha_1 + \dots + \alpha_{n-1} + 2\alpha_n, \dots, \alpha_1 + 2\alpha_2 + \dots + 2\alpha_n, \text{ normally ordered } B_{n-1}\}$$

and the Cartan-Weyl elements are

$$e_{\alpha_{l}+\dots+\alpha_{k+1}} = [e_{\alpha_{l}+\dots+\alpha_{k}}, e_{\alpha_{k+1}}]_{q^{2}}$$

$$e_{\alpha_{l}+\dots+\alpha_{n-1}+2\alpha_{n}} = [e_{\alpha_{l}+\dots+\alpha_{n-1}+\alpha_{n}}, e_{\alpha_{n}}]_{q^{2}}$$

$$e_{\alpha_{l}+\dots+\alpha_{k-1}+2\alpha_{k}+\dots+2\alpha_{n}} = [e_{\alpha_{l}+\dots+\alpha_{k}+2\alpha_{k+1}+\dots+2\alpha_{n}}, e_{\alpha_{k}}]_{q^{2}}.$$

 $\mathfrak{g} = D_n$ has the positive roots

$$\sum_{j=l}^{k-1} \alpha_j \qquad l < k \leqslant n \text{ or } l < n-1, \ k = n+1$$

$$\sum_{j=l}^{k-1} \alpha_j + 2\sum_{j=k}^{n-2} \alpha_j + \alpha_{n-1} + \alpha_n \qquad l < k \leqslant n-2$$

$$\sum_{j=l}^{n-2} \alpha_j + \alpha_n \qquad l \leqslant n-2, \text{ and } \alpha_n.$$

The normal ordering is

$$D_{4}: \{\alpha_{1}, \alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2} + \alpha_{3}, \alpha_{1} + \alpha_{2} + \alpha_{4}, \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4}, \alpha_{1} + 2\alpha_{2} + \alpha_{3} + \alpha_{4}, \alpha_{2}, \alpha_{2} + \alpha_{3}, \alpha_{3}, \alpha_{2} + \alpha_{3} + \alpha_{4}, \alpha_{2} + \alpha_{4}, \alpha_{4}\}$$

$$D_{n}: \{\alpha_{1}, \alpha_{1} + \alpha_{2}, \dots, \alpha_{1} + \dots + \alpha_{n-2} + \alpha_{n-1}, \alpha_{1} + \dots + \alpha_{n-2} + \alpha_{n}, \alpha_{1} + \dots + \alpha_{n-1} + \alpha_{n}, \alpha_{1} + \dots + \alpha_{n-3} + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_{n}, \dots, \alpha_{1} + 2\alpha_{2} + \dots + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_{n}, \text{ normally ordered } D_{n-1}\}$$

and the Cartan-Weyl elements are

$$\begin{split} e_{\alpha_{l}+\dots+\alpha_{k+1}} &= [e_{\alpha_{l}+\dots+\alpha_{k}}, e_{\alpha_{k+1}}]_{q^{2}} \qquad k < n-1 \\ e_{\alpha_{l}+\dots+\alpha_{n-2}+\alpha_{n}} &= [e_{\alpha_{l}+\dots+\alpha_{n-2}}, e_{\alpha_{n}}]_{q^{2}} \\ e_{\alpha_{l}+\dots+\alpha_{n-1}+\alpha_{n}} &= [e_{\alpha_{l}+\dots+\alpha_{n-2}+\alpha_{n}}, e_{\alpha_{n-1}}]_{q^{2}} \qquad l < n-2 \\ e_{\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}} &= [e_{\alpha_{n-1}}, e_{\alpha_{n-2}+\alpha_{n}},]_{q^{2}} \\ e_{\alpha_{l}+\dots+\alpha_{n-3}+2\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}} &= [e_{\alpha_{l}+\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}}, e_{\alpha_{n-2}}]_{q^{2}} \\ e_{\alpha_{l}+\dots+\alpha_{k-1}+2\alpha_{k}+\dots+2\alpha_{k-2}+\alpha_{n-1}+\alpha_{n}} &= [e_{\alpha_{l}+\dots+\alpha_{k}+2\alpha_{k+1}+\dots+2\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}}, e_{\alpha_{k}}]_{q^{2}}. \end{split}$$

3.2. Step algebra $S_q(\mathfrak{g}, \mathfrak{k})$

From now on we denote by \mathfrak{h} the Cartan subalgebra of \mathfrak{k} , and so $U_q(\mathfrak{h})$ is generated by the elements $k_i^{\pm 1}$, i = 2, ..., n. Let $\mathfrak{k}_+ \subset U_q(\mathfrak{g})$ be the vector space spanned by $\{e_\alpha | \alpha \in \Delta_+^{\mathfrak{k}}\}$. We define

$$S'_q(\mathfrak{g},\mathfrak{k}) = \{ u \in U_q(\mathfrak{g}) | \mathfrak{k}_+ u \subset U_q(\mathfrak{g}) \mathfrak{k}_+ \}$$

and the step algebra

$$S_q(\mathfrak{g},\mathfrak{k}) = S'_q(\mathfrak{g},\mathfrak{k})/U_q(\mathfrak{g})\mathfrak{k}_+.$$

 $S_q(\mathfrak{g}, \mathfrak{k})$ is an adjoint $U_q(\mathfrak{h})$ -module and it is a direct sum of weight subspaces $S_q(\mathfrak{g}, \mathfrak{k})_{q^{\mu}}$. Using the Poincaré–Birkhoff–Witt theorem we may split

$$U_q(\mathfrak{g}) = U_1 U_q(\mathfrak{h}) \oplus U_q(\mathfrak{k}_-) \mathfrak{k}_- U_1 U_q(\mathfrak{h}) \oplus U_q(\mathfrak{g}) \mathfrak{k}_+$$
(1)

where $U_1 \subset U_q(\mathfrak{g})$ is the vector space spanned by the monomials $e_{\gamma}^{\bar{n}} = e_{-\gamma_p}^{n_p} \dots e_{-\gamma_l}^{n_1} e_0^{n_0} e_{\gamma_1}^{n_1'} \dots e_{\gamma_p}^{n_p'}$ where $\Delta_+^{\mathfrak{g}} = \{\gamma_1, \dots, \gamma_s\}$ is normally ordered and $\Delta_+^{\mathfrak{g}} \setminus \Delta_+^{\mathfrak{k}} = \{\gamma_1, \dots, \gamma_p\}$ and $e_0 = k_1; n_i, n_i' \in \mathbb{N}, n_0 \in \mathbb{Z}$.

Let $I_{\omega} \subset U_q(\mathfrak{g})$ be the left ideal generated by \mathfrak{k}_+ and the elements $k_i - \omega_i \cdot \mathbf{1}, i = 2, \ldots, n$ and

$$N^{\omega} = U_q(\mathfrak{g})/I_{\omega}.$$

 N^{ω} is a left $U_q(\mathfrak{k})$ -module in a natural way. Furthermore, for $u \in U_q(\mathfrak{h})$ we define $u(\omega) \in \mathbb{C}$ by $u \equiv u(\omega) \cdot \mathbf{1} \mod I_{\omega}$. Then $u(\omega)$ is a Laurent polynomial in the variables ω_i ; it is obtained via the replacement $k_i \mapsto \omega_i$ in u.

Let $P': U_q(\mathfrak{g}) \to U_1 U_q(\mathfrak{h})$ be the projection on the first summand in (1) and define $P: S_q(\mathfrak{g}, \mathfrak{k}) \to U_1 U_q(\mathfrak{h})$ by $P(s + U_q(\mathfrak{g})\mathfrak{k}_+) = P'(s)$.

Theorem 1. The mapping $P: S_q(\mathfrak{g}, \mathfrak{k}) \to U_1 U_q(\mathfrak{h})$ is injective.

Proof. Let $s \in S_q(\mathfrak{g}, \mathfrak{k})$ be such that P(s) = 0. We may assume that s has weight q^{μ} . Now

$$s = \sum_{\bar{m}\gamma \gg \mu} v_{\bar{m}} e_{\gamma}^{\bar{m}} u_{\bar{m}}$$

where $\bar{m}\gamma = (m'_1 - m_1)\gamma_1 + \dots + (m'_p - m_p)\gamma_p$ and \gg is the order defined by the simple roots of \mathfrak{k} and $v_{\bar{m}} \in U_q(\mathfrak{k})$, $u_{\bar{m}} \in U_q(\mathfrak{h})$.

If $s \neq 0$, then we choose a weight $\lambda \in \mathfrak{h}^*$ such that $\lambda + \mu \in \Lambda^+$ and $u_{\bar{m}}(q^{\lambda}) \neq 0$ for some \bar{m} ; let \bar{m}_o be the one for which $\bar{m}_o \gamma$ is minimal. Because $e_{\alpha}s \equiv 0 \mod U_q(\mathfrak{g})\mathfrak{k}_+$ for all $\alpha \in \Delta_+^{\mathfrak{k}}$, then $v_{\bar{m}_o}$ is a highest weight vector of the weight $q^{\lambda+\mu}$ in the $U_q(\mathfrak{k})$ Verma module $M(q^{\lambda+\bar{m}_o\gamma})$. On the other hand $\lambda + \mu \ll \lambda + \bar{m}_o\gamma$, a contradiction. So s = 0. \Box Let $\{\gamma \mid \pm \gamma \in \Delta^{\mathfrak{g}}_+ \setminus \Delta^{\mathfrak{k}}_+$ or $\gamma = 0\} = \{\mu_1, \dots, \mu_{2p+1}\}$ be ordered weight monotonically i.e. if $\mu_i \gg \mu_j$, then i > j. Furthermore, let $\Delta^{\mathfrak{k}}_+ = \{\beta_1, \dots, \beta_r\}$ (normally ordered).

Theorem 2. For each e_{μ_i} , i = 1, ..., 2p + 1, there exists $s_{\mu_i} \in S_q(\mathfrak{g}, \mathfrak{k})$ such that s_{μ_i} has a weight q^{μ_i} and

$$P(s_{\mu_i}) = e_{\mu_i} u_i$$

where $u_i \in U_q(\mathfrak{h})$ such that $u_i(q^{\lambda}) \neq 0$ if λ satisfies the following condition:

(*) there exists no $w \in W_{\mathfrak{k}}$ such that $w(\lambda + \mu_i + \delta) = \lambda + \mu_j + \delta$ for some j > i.

Furthermore, if $s \in S_q(\mathfrak{g}, \mathfrak{k})$ such that s has weight q^{μ_i} and $P(s) = e_{\mu_i}u, u \in U_q(\mathfrak{h})$, then $s \in U_q(\mathfrak{h})s_{\mu_i}$.

Remark. If $\lambda + \mu_i \in \Lambda^+$ then λ satisfies condition (*).

Proof. We will first prove that there exist unique elements $u_{ij} \in U_q(\mathfrak{k}_-)$ such that $e_{\mu_i} + \sum_{j>i} u_{ij} e_{\mu_j} \in N^{q^{\lambda}}$ is a highest weight vector with the weight $q^{\lambda+\mu_i}$.

Let $L_j^{\lambda} \subset N^{q^{\lambda}}$ be the left $U_q(\mathfrak{k})$ -module generated by the elements e_{μ_k} with $k \ge j$. Using the Poincaré–Birkhoff–Witt theorem and the commutation relations of the Cartan–Weyl elements, we see that

$$L_j^{\lambda} = \sum_{k \ge j} U_q(\mathfrak{k}_-) e_{\mu_k}$$

and L_i^{λ} is a free $U_q(\mathfrak{k}_-)$ -module with basis $\{e_{\mu_k} | k \ge j\}$.

Now $\{0\} = L_{2p+2}^{\lambda} \subset L_{2p+1}^{\lambda} \subset \cdots \subset L_{i}^{\lambda}$ and the left $U_{q}(\mathfrak{k})$ -module $L_{j}^{\lambda}/L_{j+1}^{\lambda}$ is equivalent with Verma module $M(q^{\lambda+\mu_{j}})$ with a highest weight vector $e_{\mu_{j}} + L_{j+1}^{\lambda}$.

Let Z_j^{λ} be the kernel of the character $\chi_{\lambda+\mu_j} : Z(\mathfrak{k}) \to \mathbb{C}$. $Z_j^{\lambda} \subset Z(\mathfrak{k})$ is a maximal ideal. If λ satisfies condition (*) then by the Harish–Chandra theorem $Z_i^{\lambda} \neq Z_j^{\lambda}$ for $j = i + 1, \ldots, 2p + 1$; so Z_i^{λ} and Z_j^{λ} are relatively prime. Then by proposition II 1.4. in [1] the ideals Z_i^{λ} and $\prod_{j=i+1}^{2p+1} Z_j^{\lambda}$ are relatively prime; so there exist $a \in Z_i^{\lambda}$ and $b \in \prod_{j=i+1}^p Z_j^{\lambda}$ such that $\mathbf{1} = a + b$.

Since $bL_{i+1}^{\lambda} = \{0\}$, then $be_{\mu_i} \in L_i^{\lambda}$ is a highest weight vector with the weight $q^{\lambda+\mu_i}$. On the other hand $be_{\mu_i} = e_{\mu_i} - ae_{\mu_i} \equiv e_{\mu_i} - \chi_{\lambda+\mu_i}(a)e_{\mu_i} \mod L_{i+1}^{\lambda} \equiv e_{\mu_i} \mod L_{i+1}^{\lambda}$. Because L_i^{λ} is a free $U_q(\mathfrak{k}_-)$ -module with basis $\{e_{\mu_k} | k \ge i\}$, there exist uniquely determined $u_{ij} \in U_q(\mathfrak{k}_-)$ such that $be_{\mu_i} = e_{\mu_i} + \sum_{j>i} u_{ij}e_{\mu_j}$ in $N^{q^{\lambda}}$.

Let \mathfrak{p} be the vector space spanned by the vectors e_{μ_j} $j = 1, \ldots, 2p + 1$. $U_q(\mathfrak{k}_-)\mathfrak{p}$ is an adjoint $U_q(\mathfrak{h})$ -module; let $\{v_1, \ldots, v_m\}$ be a basis of the weight space $(U_q(\mathfrak{k}_-)\mathfrak{p})_{q^{\mu_i}}$ consisting of vectors of the form $e_{-\beta_r}^{k_r} \ldots e_{-\beta_1}^{k_1} e_{\mu_j}$ with $\mu_i = \mu_j - \sum_{l=1}^r k_l \beta_l$ and $v_1 = e_{\mu_i}$. In the same way, let $\{v_1^k, \ldots, v_m^k\}$ be a basis of $(U_q(\mathfrak{k}_-)\mathfrak{p})_{q^{\mu_i+\beta_k}}$.

For each k = 1, ..., r, there exist elements $p_{li}^k \in U_q(\mathfrak{h})$ such that

$$e_{eta_k} v_l \equiv \sum_{j=1}^{m_k} v_j^k p_{lj}^k \mod U_q(\mathfrak{g}) \mathfrak{k}_+$$

Since the linear mapping $\varphi : U_q(\mathfrak{k}_-)\mathfrak{p} \otimes U_q(\mathfrak{h}) \to U_q(\mathfrak{g}), \ \varphi(\sum_l w_l \otimes u_l) = \sum_l w_l u_l$ is injective and $\operatorname{im} \varphi \cap U_q(\mathfrak{g})\mathfrak{k}_+ = \{0\}$, we see that for $q_1, \ldots, q_m \in U_q(\mathfrak{h})$

$$e_{\beta_k} \sum_{j=1}^m v_j q_j \equiv 0 \mod U_q(\mathfrak{g})\mathfrak{k}_+$$
⁽²⁾

for all k = 1, ..., r if and only if

$$\begin{bmatrix} p_{11}^k & \cdots & p_{1m}^k \\ \vdots & & \vdots \\ p_{m_k1}^k & \cdots & p_{m_km}^k \end{bmatrix} \begin{bmatrix} q_1 \\ \vdots \\ q_m \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

for all k = 1, ..., r. Combining these equations together and doing some renumbering we obtain the following. There exist elements $p_{lj} \in U_q(\mathfrak{h})$ such that (2) holds if and only if

$$\begin{bmatrix} p_{11} & \dots & p_{1m} \\ \vdots & & \vdots \\ p_{t1} & \dots & p_{tm} \end{bmatrix} \begin{bmatrix} q_1 \\ \vdots \\ q_m \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
(3)

where $t = \sum_{k=1}^{r} m_k$.

According to the first part of the proof we see that the equation

$$\begin{bmatrix} p_{11}(q^{\lambda}) & \dots & p_{1m}(q^{\lambda}) \\ \vdots & & \vdots \\ p_{t1}(q^{\lambda}) & \dots & p_{tm}(q^{\lambda}) \end{bmatrix} \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_m \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

has a unique solution $(\xi_1, \ldots, \xi_m) \in \mathbb{C}^m$ with $\xi_1 = 1$, if λ satisfies condition (*), and so the rank of matrix $[p_{lj}(q^{\lambda})]$ is m-1 for all λ that satisfy (*). The set of weights $\omega = q^{\lambda}$ for which λ does not satisfy (*) is Zariski-closed in $(\mathbb{C}^*)^{n-1}$, and so the set of weights $\omega = q^{\lambda}$ for which λ satisfy (*) is Zariski-dense. So the rank of the matrix $[p_{lj}]$ is m-1 and equation (3) has a solution (q_1, \ldots, q_m) with $q_1 \neq 0$. Hence there exist $q_1, \ldots, q_m \in U_q(\mathfrak{h})$ with $q_1 \neq 0$ such that $e_{\beta_k} \sum_{j=1}^m v_j q_j \equiv 0 \mod U_q(\mathfrak{g})\mathfrak{k}_+$ for all $k = 1, \ldots, r$.

Let p be an irreducible factor of q_1 . If $p(q^{\lambda}) = 0$ for λ satisfying (*), then by the uniqueness of the solution we get $q_j(q^{\lambda}) = 0$ for all j. Using Hilbert's *Nullstellensatz* we see that p is also a factor of each q_j , and so there is a solution of (3), such that $q_1(q^{\lambda}) \neq 0$ for all λ satisfying (*). Now let (q_1, \ldots, q_m) be a solution of (3) such that the q_i 's have no common irreducible factors. Now we have proved the theorem with $u_i = q_1$.

Let $S_q^0(\mathfrak{g}, \mathfrak{k}) \subset S_q(\mathfrak{g}, \mathfrak{k})$ be the subalgebra generated by s_{μ_i} 's and $U_q(\mathfrak{h})$.

Remark. In practice, the steps s_{μ_i} can be constructed by straightforward computation. For the quantum algebra pairs $U_q(\mathfrak{sl}(n-1)) \subset U_q(\mathfrak{sl}(n))$ it has been done in [6].

3.3. $U_q(\mathfrak{k})$ -finite $U_q(\mathfrak{g})$ -modules

Let $\Lambda \subset \mathfrak{h}^*$ be the set of integral weights, i.e. the weights for which $\langle \lambda | \alpha_j \rangle \in \mathbb{Z}$, j = 2, ..., nand let Ω be the set of weights of the form $\omega = \epsilon \cdot q^{\lambda}$, $\lambda \in \Lambda$ and $\epsilon_i^4 = 1$. We define a partial ordering in Ω by setting $\epsilon \cdot q^{\mu} < \epsilon \cdot q^{\lambda}$ if the first non-zero element in the sequence $\langle \lambda - \mu | \alpha_2 \rangle, ..., \langle \lambda - \mu | \alpha_n \rangle$ is positive.

 $U_q(\mathfrak{g})$ -module V is $U_q(\mathfrak{k})$ -finite if it is a sum of irreducible finite-dimensional $U_q(\mathfrak{k})$ modules. Let V^{ω} be the sum of all irreducible $U_q(\mathfrak{k})$ -submodules with highest weight $\omega \in \Omega^+$. We denote by $V^+ \subset V$ the subspace which is annihilated by \mathfrak{k}_+ and $V_{\omega}^+ = V^+ \cap V^{\omega}$.

Let D be the commutant of $U_q(\mathfrak{h})$ in $S_q^0(\mathfrak{g}, \mathfrak{k})$. Now V^+ is an $S_q(\mathfrak{g}, \mathfrak{k})$ -module and V_{ω}^+ a D-module in a natural way.

Theorem 3. If V is an irreducible $U_q(\mathfrak{k})$ -finite $U_q(\mathfrak{g})$ module and $0 \neq v \in V^+$, then $V^+ = S_q^0(\mathfrak{g}, \mathfrak{k})v$.

Proof. Because V is irreducible we need to show that $V' = U_q(\mathfrak{k}_-)S_q^0(\mathfrak{g}, \mathfrak{k})v$ is $U_q(\mathfrak{g})$ -invariant. For this it is sufficient to show that for any $v' \in V'$, $e_{\mu_k}v' \in V'$ for k = 1, ..., 2p + 1.

Let $v' = usv \in V'$, $u \in U_q(\mathfrak{k}_-)$, $s \in S_q^0(\mathfrak{g}, \mathfrak{k})$. Using the commutation relations of Cartan–Weyl generators we see that

$$e_{\mu_k}v' = \sum_{i=1}^{2p+1} u_i e_{\mu_i} sv \qquad u_i \in U_q(\mathfrak{k}_-).$$

So we need only show that $e_{\mu_i}v' \in V'$ for any $v' \in S_q^0(\mathfrak{g}, \mathfrak{k})v$. We do this by induction. Clearly we may take $s_{\mu_{2p+1}} = e_{\mu_{2p+1}}$ so

$$e_{\mu_{2p+1}}v' = s_{\mu_{2p+1}}v'.$$

Assume that $e_{\mu_i}v' \in V'$ for all i > k. Because $v' \in V^+$ we may assume that v' has weight q^{λ} with $\lambda \in \Lambda^+$.

If $\lambda + \mu_k \in \Lambda^+$, then by theorem 2

$$e_{\mu_k}u_k(q^{\lambda})v'=s_{\mu_k}v'-\sum_{j>k}v_{jk}u_{jk}(q^{\lambda})e_{\mu_j}v'$$

where $u_k(q^{\lambda}) \neq 0$ and $v_{jk} \in U_q(\mathfrak{k}_-)$; so $e_{\mu_k}v' \in V'$.

If $\lambda + \mu_k \notin \Lambda^+$, then

$$e_{\mu_k}v'\in \sum_{j>k}U_q(\mathfrak{k}_-)e_{\mu_j}v'=L_{k+1}.$$

Otherwise $e_{\mu_k}v' + L_{k+1}$ would be a highest weight vector of finite-dimensional $U_q(\mathfrak{k})$ -module L_k/L_{k+1} with weight $q^{\lambda+\mu_k}$; a contradiction.

For each $\omega \in \Omega^+$, let $M_{\omega} = \{u \in U_q(\mathfrak{g}) | uV_{\omega}^+ \subset V_{\omega'}^+$ for some $\omega' < \omega\}$. Denote $D_{\omega} = D/D \cap U_q(\mathfrak{g})M_{\omega}$. V^{ω} is a minimal component of a $U_q(\mathfrak{g})$ -module V if $V^{\omega} \neq \{0\}$ and $V^{\omega'} = 0$ for all $\omega' < \omega$, $\omega' \in \Omega^+$. If V^{ω} is a minimal component of V, then V_{ω}^+ is a D_{ω} -module in a natural way. It follows from our choice of the partial ordering in Ω that any irreducible $U_q(\mathfrak{k})$ -finite $U_q(\mathfrak{g})$ -module has a unique minimal component.

In [6] we have proved the following theorem.

Theorem 4. The map $V \mapsto V_{\omega}^+$ gives a (1–1)-correspondence between the set $R(\omega)$ of equivalence classes of irreducible $U_q(\mathfrak{k})$ -finite $U_q(\mathfrak{g})$ -modules with a minimal component V^{ω} and the set $T(\omega)$ of equivalence classes of irreducible D_{ω} -modules.

This theorem is useful when classifying the $U_q(\mathfrak{k})$ -finite $U_q(\mathfrak{g})$ -modules since it is usually quite simple to determine the structure of D_{ω} . In [6] we have done it in the $U_q(\mathfrak{sl}(n-1)) \subset U_q(\mathfrak{sl}(n))$ case. There we have used the explicit forms of the elements s_{μ_i} . However, that is probably not necessary, since methods analogous to those used in [11] can obviously also be used in the q-deformed case.

References

- [1] Bourbaki N 1961 Éléments de mathématique, algèbre commutative (Paris: Hermann) ch 1-2
- [2] Drinfeld V G 1985 Hopf algebra and the quantum Yang-Baxter equation Sov. Math. Dokl. 32 254-8
- [3] van den Hombergh A 1976 Harish-Chandra modules and representations of step algebras PhD Thesis Department of Mathematics, Katholieke Universiteit te Nijmegen, Netherlands
- [4] Jimbo M 1985 A q-difference analogue of $U(\mathcal{G})$ and the Yang-Baxter equation Lett. Math. Phys. 10 63–9
- [5] Kekäläinen P 1988 On irreducible A₂-finite G₂-modules J. Algebra **117** 72–80
- [6] Kekäläinen P 1992 Step algebras of quantum s(n) J. Algebra 150 245-53

- [7] Khoroshkin S M and Tolstoy V N 1991 Universal *R*-matrix for quantized (super)algebras *Commun. Math. Phys.* 141 599–617
- [8] Lusztig G 1990 Finite dimensional Hopf algebras arising from quantized universal enveloping algebras J. Am. Math. Soc. 3 257–96
- [9] Lusztig G 1988 Quantum deformations of certain simple modules over enveloping algebras Adv. Math. 70 237–249
- [10] Lusztig G 1990 Quantum groups at roots of 1 Geom. Dedicata 35 89-113
- [11] Mickelsson J 1977 A description of discrete series using step algebras Math. Scand. 41 63-78
- [12] Mickelsson J 1980 Discrete series of Lie superalgebras Rev. Mod. Phys. 18 197-210
- [13] Mickelsson J 1984 Representations of Kac-Moody algebras by step algebras J. Math. Phys. 26 377-82
- [14] Mickelsson J 1973 Step algebras of semisimple Lie algebras Rev. Mod. Phys. 4 307-18
- [15] Rosso M 1990 Analogue de la forme de Killing et du Théorème d'Harish-Chandra pour les groupes quantiques Ann. Sci. Éc. Norm. Sup. 4^e Série 23 445-67
- [16] Rosso M 1989 An analogue of PBW theorem and the universal *R*-matrix for $U_h sl(N+1)$ Commun. Math. Phys. **124** 307–18
- [17] Rosso M 1988 Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra Commun. Math. Phys. 117 581–93
- [18] Tanisaki T 1990 Harish–Chandra isomorphism for quantum algebras Commun. Math. Phys. 127 555–71
- [19] Zhelobenko D P 1988 Extremal projectors and generalized Mickelsson algebras over reductive Lie algebras Izv. Akad. Nauk. SSSR Ser. Mat. 52 758–73 (in Russian) (Engl. transl. 1989 Math. USSR Izv. 33)
- [20] Zhelobenko D P 1983 S-algebras and Verma modules over reductive Lie algebras Dokl. Akad. Nauk. SSSR 273 785–8 (in Russian) (Engl. transl. 1983 Sov. Math. Dokl. 28 696–700)