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Step algebras of quantum algebras of typed, B and D
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University of Jyvaskyh, Department of Mathematics, Seminaarinkatu 15, SF-40100, Finland
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Abstract. We study the step algebras for the quantum algebras corresponding to the Lie algebra
pairsA,_1 C A,, B,_1 C B, andD,_1 C D,.

1. Introduction

In [14] Mickelsson introduced the step algelfi¢, g) of the Lie algebra paitt, g), where

t is a semisimple Lie subalgebra of a finite-dimensional Lie alggbrahe theory of step
algebras was later also developed by van den Hombergh [3] and Zhelobenko [19, 20]. Step
algebra methods have been applied to the representation theory of semisimple Lie algebras
[11, 5], Lie superalgebras [12] and Kac—Moody algebras [13].

A step algebra is defined b§(g, &) = S'(g,%)/U(g)t., where S'(g,¥) = {u €
U(g)lt,u C U(g)t,}. Step algebras are useful for studying irreducibfinite g-modules.
g-module V is e-finite, if it is a direct sum of finite-dimensiond&rmodules. LetV ' be
the set oft-maximal vectors inV. Step algebraS(g, £) operates inV* in a natural way.

One basic result in the theory of step algebras is the existence of a certain subalgebra
So(g, &) C S(g, £), which generates the whoké* from a singlev € V*.

In this paper we study the step algebragyedeformations of the following Lie algebra
pairs: A,_1 C A,, B,_1 C B, andD,_; C D,. As the main result we prove the existence
of the subalgebray(g, ) in theseg-deformed cases. Earlier in [6] we studied the step
algebra of thej-deformation of the Lie algebra pait(n — 1) C sl(n).

2. Quantum algebraUy,(g)

Let g be a simple complex Lie algebrg,c g a Cartan subalgebra add;, ..., «,} C b*
a basis of simple roots.

Let (-|-) be the dual of the Killing form restricted tip and (a,»j);.szl, aij = (ailaj) =
2(ailaj)/(ajle;), the Cartan matrix of.

Forg € C* let
q9"—q™"

— q_l [n]q! = [1]q[2]q ce [n]q [O]q! =

1] e
nl, [m —n],'[n],!

U,(g) is the associative algebra ové&r generated by the elemenk$l, e; and f;,
i =1,...,n, with relations

kik7t =k =1 kikj = kik;

[n]q =
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bek =g Kk =g,
k2 — k2
lei. [V =35 7 =

i i

1-a;
Z(‘l)v[l va’]} (el =0 %
v=0 q?

1-a;;
v 1- ij —aij—V v . .
> -1 [ v”’f} ST =0 i
2
v=0 9qi
whereq; = ¢“1*)/2, so ¢ = ¢/" = q“). Quantum algebras were introduced by
Drinfeld [2] and Jimbo [4].
U,(g) is a Hopf algebra with a coproduet : U, (g) — U, (g) ® U,(g) defined by
AR =K @k Al)=ea®1+k20ea  Af)=f0K+18 f
and a counik : U,(g) — C and an antipods : U,(g) — U,(g) defined by
elkiy=ellH =1  ele)=e(f)=0
Stk =k Ser)=—kPe;  S(f)=—fik’.
Recall thatA ande (respectivelyS) extend to an algebra (anti) homomorphismiff(g).
Let L (respectivelyR) be the left (respectively right) regular representatiorUgtg).

The adjoint representation &f,(g) is defined by ad= (L ® R)(Id®S)A.
From now on we assume thatis not a root of unity.

Notations

Let U, (g+) C U,(g) (respectivelyU,(g-)) be the subalgebra generated by the elements
e; (respectivelyf;), i =1,...,n andU,(h) the subalgebra generated by the eleméﬁfs
ThenU,(h) is the algebra of Laurent polynomials in the indeterminates

Fora =Y Lia;, I € Z, sethky = ki ... klr.

2.1. Verma modules

Let V be aU,(g)-module (see [9,17]). A vector & v € V is a weight vector of weight
o= (w1,...,w,) € (CH" if kkv=w;vforalli =1,...,n. Such aw generates a character
w:U,(h) — C. Now

Vo={veVkv=wwv, i=1...,n}

is the weight subspace corresponding to the weightA vector 0# v € V, is a highest
weight vector ife;v =0 foralli = 1, ..., n. V is a highest weight module, if it is generated
by a highest weight vector.

As in the theory of semisimple Lie algebras for eacle (C*)" we can construct the
Verma moduleM (o) and the unique irreducible standard cyclic modulgy) with highest
weight w.

For eachi € h* we can construct a charactet : U,(h) — C by defining
q*(k;) = g™, If vV is an irreducible finite-dimensional,(g)-module, then it is a
highest weight module with the highest weight = € - ¢* = (e1¢%*V, ..., €,q*®),
wherex € A™ is a dominant integral weight of, ande! = 1. We denote by2* the set
of weights of this form. For any weight € Q* V(w) is finite-dimensional. Furthermore
V(e q*) = V(¢") ® C, whereC, is a one-dimensional/, (g)-module with the highest
weighte. SinceU,(g) is a Hopf algebra, we can (using) define al, (g)-module structure
on the tensor product df, (g)-modules.
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2.2. The Harish—Chandra theorem

Let us denote byZ(g) the centre ofU,(g). Letv € M(q") be a highest weight vector.
Then for allz € Z(g), zv is a highest weight vector with weight', sozv = x,(z)v, where
X, - Z(g) — C is an algebra homomorphism.
Let § be the half sum of the positive roots gfand W, the Weyl group ofg. Let ~ be
the equivalence relation ifi* defined by:A ~ u < Jw € W, such thath + 8§ = w(u + 6).
Now we can formulate the analogue of the Harish—Chandra theorem, see [15, 18].

Harish—Chandra theorem If x, = x,, theni ~ pu.

2.3. The Cartan-Weyl basis and the PoirsaBirkhoff-Witt theorem

The system of positive roota of g is normally ordered if each root which is a sum of
other roots lies between its summands, and g if « is beforeg in the normal ordering.

The g-analogue of the Cartan—Weyl basis is constructed inductively in the following
way [7]. Fix some normal ordering inf. For a simple root; we definee,, = ¢;. For a
non-simple rooty = « + B, wherea, g € A anda < g such that there are no other roots
o’ and 8’ betweenx and 8 for which y = o’ + 8/, we set

e, = [eq, egly2 e_y, =le_p,e_gl,
if e, andeg are already constructed. Here, [es], = eqes — g~ @ Pege,.
The g-analogues of the Cartan—Weyl generators satisfy commutation relations of the
following form. For anyy € Af
2 _ k2
[e)/a e,y] = ay(‘])ﬁ~
Fora,Be A%, a <8

Iyl Im
lewresliz =" Y buu@eied...en

a<vi<--<v,<p

where) ", l;v; =« + 8, and

L I 4 I
[e,g, e,a] = Z Cl,,v,,l,f.v,-’ (6], ka, kﬁ)é,vm . eivlevli S €

V<<V < "
B<vi<--<v,
where) ", (I/vi — l;v;) = B —a. The explicit form of the coefficients, » andc in the rank
two case can be found in [7].
ni

Let Ai = {y1,..., ys} be normally ordered. The monomia&é_f% coel ent el

k’f ... kl"; n;,;m; € N, k; € Z form a Poincag—Birkhoff-Witt basis for, (g), see [8, 10, 16].

3. Step algebraS,(g, £)

3.1. Cartan—-Weyl generators

Let g be a Lie algebra of typd,,, B, or D, andU,(¢) C U,(g) a subalgebra generated by
the elementskiﬂ, e, and f;, i =2,...,n. ThenU,(¥) is ag-deformation of Lie algebra
of the typeA, _1, B,_1 and D,,_1, respectively.

Next we fix the normal ordering of the positive roots and Cartan—Weyl generators for
these algebras. L&, ..., «a,} be a set of simple roots @f the simple roots of subalgebra
tcCgarefay,...,a,}.
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In the casgy = A, the positive roots are

k
> e [ <k
j=l

We fix the normal ordering inductively by setting

Az o, 01 + o2, a2}

A, o, 01+, ..., a1+ a2+ - - -+, normally orderedd,,_1}.
Cartan—Weyl generators are defined by

Coptetagyy = LCojttay » Capirlg?-

The positive roots ofy = B, are

k=1
aj l<k<n+1
j=l
k—1 n
ozj—l—ZZot_,- l<k<n
j=l Jj=k

and the normal ordering is defined as follows:

By i {ayg, a1 + o2, a1 + 202, 00}

B, oy, a1 4az,...,01+ - Fo, 0+ a1+ 20, ..., 01+ 200
+ -+ + 2a,, normally orderedB,_1}

and the Cartan—Weyl elements are

Coytotogir = [ed1+"'+d1{9 eak+1]q2
€ay+eay 1420, = [Caytta, 1+a,s €a,lg?
Cqyt oy g+ 204420, — [ea,+~~~+ak+2ak+1+-~+2a”’ eak]q2~

g = D, has the positive roots

k=1

a; l<k<norl<n-1 k=n+1
j=l
k—1 n—2
Zaj—l—ZZaj%—an_l—l-an l<k<n-2
j=l j=k

n—2
Zaj—}—an [ <n-—2, ando,.
i=l

The normal ordering is

Dy {aq, 01 + oo, a1 + ap + a3, 01 + oo + g, @1 + op + o3 + oy, a1 + 2000 + a3
+oy, a2, a2 + 03, a3, A2 + 03 + 04, A2 + A4, 0]

D, o, o1 +az, ...+ a2t o0t o2 a0
+- 4o ta, o+t 3 200, 0+ a1 Ay, ..., 0+ 2000
4+ 20, 2+ a1 + a,, normally orderedD,_1}
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and the Cartan—Weyl elements are

Copttaryy = [Carttans Canalg? k<n-1
€+t gtay = (€t s €a,lq?

bty sty = [€aytota_gtays €ay1lg? l<n-2
€a, oy 1+, = [€a, 15 €ay ptan,]g?
ottty g+ 20 p+an 1ty = [Cartay otan 1+ans €anolq?

€04t 1+ 20+ 420 2ty 1o, — [eoq+<~'+ozk+20tk+1+---+2a,,,z+0t,,71+ct,,» eak]q2~

3.2. Step algebr®, (g, £)

From now on we denote bly the Cartan subalgebra &f and soU, (h) is generated by the
elementskiil, i=2,...,n Lett, C U,(g) be the vector space spanned {ay|o € Ai}.
We define

S,(8.8) = {u € Uy(g)[eru C Uy(g)ts)
and the step algebra
Sq(9,8) = S,(g,8)/ Uy (g)t.

Sq(g, ©) is an adjointU, (h)-module and it is a direct sum of weight subspasggy, £),-.
Using the Poinca@-Birkhoff-Witt theorem we may split

Uy(9) =UU,(h) ® U, (kO)E_ULU,(h) @ U, (g4 1)

where Uy C U,(g) is the vector space spanned by the monomiaf,s =

' n .
e, ... e’ .. .e,), where Al = {y1,....y} is normally ordered and\j\AY =
{yi,...,vp} @ndeg = k1; n;,n; € N, ng € Z.

Let I, C U,(g) be the left ideal generated Iy and the elements —w;-1,i =2,...,n
and

N¢is a leftU, (¢)-module in a natural way. Furthermore, fok U, (h) we defineu(w) € C
byu = u(w)-1 mod1,. Thenu(w) is a Laurent polynomial in the variables; it is obtained
via the replacement; — w; in u.

Let P’ : U,(g) — UiU,(h) be the projection on the first summand in (1) and define
P 1 8,(g,®) — U1Uy(h) by P(s + Uy(g)ts) = P'(s).

Theorem 1 The mappingP : S, (g, £) — U U, (h) is injective.
Proof. Lets e S,(g,t) be such thatP(s) = 0. We may assume thathas weightg*.

Now
s = Z v,he;"u,h

my>>pn

wheremy = (m} —my)y1 + -+ (m), —m,)y, and>> is the order defined by the simple
roots oft andv; € U, (E-), um € Uy (h).

If s # 0, then we choose a weighte h* such thath + u € A* andu;(g”) # 0 for
somenm; let m, be the one for whichii,y is minimal. Because,s = 0 modU,(g)¢ for
all « € A%, thenwv,;, is a highest weight vector of the weight** in the U,(¢) Verma
module M (¢**"+7). On the other hand + 1 < A + m,y, a contradiction. S@ =0. [
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Let{y|xty e Ai\Ai ory =0} ={u1, ..., u2pt+1} be ordered weight monotonically
ie. if u; > u;j, theni > j. Furthermore, Ieni ={B1,..., B} (normally ordered).

Theorem 2 For eache,,, i =1,...,2p 4+ 1, there exists,, € S,(g, &) such thats,, has
a weightg* and

P(sy,) = ey u;
whereu; € U, (h) such thatu;(¢*) # 0 if 1 satisfies the following condition:
(%) there exists nav € We such thatw(h + u; +8) = A + u; + 8 for somej > i.

Furthermore, ifs € S,(g, £) such that s has weight*' and P(s) = e,,u, u € U,(h),
thens € U, (h)s,,.

Remark If A + u; € AT thena satisfies conditionx).

Proof. We will first prove that there exist unique elements € U,(t_) such that
eu, + Y- uijen, € N7 is a highest weight vector with the weight+#.

Let L; C N9 be the leftU, (¢)-module generated by the elements with k > ;.
Using the Poincd@—Birkhoff-Witt theorem and the commutation relations of the Cartan—
Weyl elements, we see that

L =Y Uyt ey,
k>j
and L;.\ is a freeU, (¢_)-module with basige,, |k > j}.

Now {0} = L3,,, C L},,; C --- C L} and the left, (¢)-moduleL} /L, , is equivalent
with Verma moduleM (¢***) with a highest weight vectar,,, + L}, ;.

Let Z} be the kernel of the charactef,,, : Z(®) — C. Z} C Z(¥) is a maximal
ideal. If A satisfies condition«) then by the Harish—-Chandra theorefit # Z} for
j=i+1...,2p+1;s0Z} ande’.\ are relatively prime. Then by proposition Il 1.4. in [1]
the idealsz; and ]_[fii*jl Z} are relatively prime; so there existe Z} andb € []7_;,, Z}
such thatl = a + b.

SincebL},, = {0}, thenbe,, € L} is a highest weight vector with the weight /.
On the other hande,, = e, — ae, = e, — xusu(a)e,, modL}, = e, modL’ ;.
Becausel! is a freeU, (¢_)-module with basige,, |k > i}, there exist uniquely determined
uij € Uy(¢_) such thatbe,, = e, + Y, uije,, in N7

Let p be the vector space spanned by the vectgrsj = 1,...,2p + 1. U,(E )p
is an adjointl, (h)-module; let{vs, ..., v,} be a basis of the weight spa¢&, (¢_)p),u
consisting of vectors of the form", ...e"% e, with 1; = p; — 3 kif andvy = ey,,.

In the same way, Ie{v’{, e Ufnk} be a basis ofU, (¢-)p) gu+s -
For eachk =1,...,r, there exist eIementp{fl. € U, (h) such that

my
ep V) = Z v_;‘pfj mod U, (g)¢4.
j=1

Since the linear mapping : U, (¢_)p @ U, (h) — Uy (@), O, wy Q@ up) =Y, wyuy 1S
injective and inp N U, (g)t; = {0}, we see that fogy, ..., gn € U, (h)

e, Y vig; =0 modU, (g)ty 2)
=1



Step algebras of quantum algebras of typeB and D 1051

forallk =1,...,r if and only if

|:P]i1 p]{m:||:511j| {0}
pl]’;kl ttt pfnkm qm O

forall k =1,...,r. Combining these equations together and doing some renumbering we
obtain the following. There exist elements € U, (h) such that (2) holds if and only if

pi1 ... DPim q1 0
Pr1 e Ptm qm 0

wheret = 3 _; my.
According to the first part of the proof we see that the equation

|:P11(6]A) plm(qk)} |:$1:| {0}
pal@) ... pm(gh) d L&, 0
has a unique solutios, ..., &,) € C™ with & = 1, if A satisfies condition), and so
the rank of matrix p;;(¢*)] is m — 1 for all 1 that satisfy ). The set of weightso = ¢*
for which A does not satisfy«) is Zariski-closed in(C*)"~1, and so the set of weights
o = g* for which i satisfy §) is Zariski-dense. So the rank of the matrjx;| is m — 1 and
equation (3) has a solutio@s, . . ., g») With g1 # 0. Hence there exisfy, ..., g, € U, (h)
with g1 # 0 such thatg, 7 vig; = 0 modU, (g)t, forallk =1,...,r.

Let p be an irreducible factor of;. If p(¢*) = 0 for A satisfying §), then by the
uniqueness of the solution we ggt(¢*) = 0 for all j. Using Hilbert'sNullstellensatzwe
see thatp is also a factor of eacly;, and so there is a solution of (3), such thatg*) # 0

for all A satisfying &). Now let (g, ..., ¢,) be a solution of (3) such that thg's have no
common irreducible factors. Now we have proved the theorem wyith ¢;. d

Let Sg(g, ¥) C S,(g, &) be the subalgebra generatedsgys and U, (h).

Remark In practice, the steps,, can be constructed by straightforward computation. For
the quantum algebra pait§, (sl(n — 1)) C U, (sl(n)) it has been done in [6].

3.3. Uy (®)-finite U, (g)-modules

Let A C h* be the set of integral weights, i.e. the weights for whithy;) € Z, j =2, ..., n
and letQ be the set of weights of the form = ¢ - ¢*, » € A ande} = 1. We define a
partial ordering inQ by settinge - ¢* < € - ¢* if the first non-zero element in the sequence
(A — ulag), ..., (A — ulay,) is positive.

U, (g)-module V is U, (®)-finite if it is a sum of irreducible finite-dimensional, (£)-
modules. LetV® be the sum of all irreduciblé/, (¢)-submodules with highest weight
w € QFf. We denote byV*t c V the subspace which is annihilated Wy and
Vi=vtnve.

Let D be the commutant o/, (h) in Sfl’(g, £). Now VT is an S, (g, £)-module andV,"

a D-module in a natural way.

Theorem 3 If V is an irreducible U, (¢)-finite U,(g) module and 0# v € V*, then
V=52, Ho.
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Proof. BecauseV is irreducible we need to show that’ = Uq(fe_)Sg(g,{’)v is U, (9)-
invariant.  For this it is sufficient to show that for any e V', e, v e V' for
k=1 ...,2p+ 1

Let v =usv € V', u € Uy(£), s € S(?(g, £). Using the commutation relations of
Cartan—Weyl generators we see that

2p+1
!
e,V = Z uje,,sv u; € Uy (8).
i=1

So we need only show that, v’ € V' for any v’ € Sg(g, £)v. We do this by induction.
Clearly we may take,, ., = e,,,, SO

eﬂ2p+lv/ = SHZ,H—IU/'
Assume that,,v' € V' for all i > k. Becausey’ € V* we may assume that has weight
g* with » € AT,
If » + ur € AT, then by theorem 2

i@V = s,V = ) vy (gte,, v
Jj>k
whereu;(¢*) # 0 andvj, € U, (¢_); soe, v € V'.
If A+ ux ¢ AT, then

ey v € Z Uy(€ e, v = Liga.
j>k
Otherwisee,, v'+ L1 would be a highest weight vector of finite-dimensiobigl¥)-module
Li/L;,1 with weight ¢g**+#; a contradiction. O

For eachw € QF, let M, = {u € U,(g)luV, C V. for somew’ < w}. Denote
D, =D/DNU,(g)M,. V* is a minimal component of &,(g)-moduleV if V* # {0}
and Ve =0 for all o < w, o € Q*. If V* is a minimal component o¥, thenV,* is a
D,-module in a natural way. It follows from our choice of the partial orderinqithat
any irreduciblet, (¢)-finite U, (g)-module has a unique minimal component.

In [6] we have proved the following theorem.

Theorem 4 The mapV +— VI gives a (1-1)-correspondence between theRget) of
equivalence classes of irreduciblg, (¢)-finite U, (g)-modules with a minimal component
V¢ and the set 1) of equivalence classes of irreducibig,-modules.

This theorem is useful when classifying ttig (¢)-finite U,(g)-modules since it is
usually quite simple to determine the structure @f. In [6] we have done it in the
U,(sl(n — 1)) C U,(sl(n)) case. There we have used the explicit forms of the elemgnts
However, that is probably not necessary, since methods analogous to those used in [11] can
obviously also be used in thedeformed case.
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