Step algebras of quantum algebras of type $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{D}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 291045
(http://iopscience.iop.org/0305-4470/29/5/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:09

Please note that terms and conditions apply.

Step algebras of quantum algebras of type A, B and D

Pekka Kekäläinen
University of Jyväskylä, Department of Mathematics, Seminaarinkatu 15, SF-40100, Finland

Received 2 June 1995

Abstract

We study the step algebras for the quantum algebras corresponding to the Lie algebra pairs $A_{n-1} \subset A_{n}, B_{n-1} \subset B_{n}$ and $D_{n-1} \subset D_{n}$.

1. Introduction

In [14] Mickelsson introduced the step algebra $S(\mathfrak{k}, \mathfrak{g})$ of the Lie algebra pair ($\mathfrak{k}, \mathfrak{g}$), where \mathfrak{k} is a semisimple Lie subalgebra of a finite-dimensional Lie algebra \mathfrak{g}. The theory of step algebras was later also developed by van den Hombergh [3] and Zhelobenko [19, 20]. Step algebra methods have been applied to the representation theory of semisimple Lie algebras [11,5], Lie superalgebras [12] and Kac-Moody algebras [13].

A step algebra is defined by $S(\mathfrak{g}, \mathfrak{k})=S^{\prime}(\mathfrak{g}, \mathfrak{k}) / U(\mathfrak{g}) \mathfrak{k}_{+}$, where $S^{\prime}(\mathfrak{g}, \mathfrak{k})=\{u \in$ $\left.U(\mathfrak{g}) \mid \mathfrak{k}_{+} u \subset U(\mathfrak{g}) \mathfrak{k}_{+}\right\}$. Step algebras are useful for studying irreducible \mathfrak{k}-finite \mathfrak{g}-modules. \mathfrak{g}-module V is \mathfrak{k}-finite, if it is a direct sum of finite-dimensional \mathfrak{k}-modules. Let V^{+}be the set of \mathfrak{k}-maximal vectors in V. Step algebra $S(\mathfrak{g}, \mathfrak{k})$ operates in V^{+}in a natural way. One basic result in the theory of step algebras is the existence of a certain subalgebra $S_{0}(\mathfrak{g}, \mathfrak{k}) \subset S(\mathfrak{g}, \mathfrak{k})$, which generates the whole V^{+}from a single $v \in V^{+}$.

In this paper we study the step algebras of q-deformations of the following Lie algebra pairs: $A_{n-1} \subset A_{n}, B_{n-1} \subset B_{n}$ and $D_{n-1} \subset D_{n}$. As the main result we prove the existence of the subalgebra $S_{0}(\mathfrak{g}, \mathfrak{k})$ in these q-deformed cases. Earlier in [6] we studied the step algebra of the q-deformation of the Lie algebra pair $\mathfrak{s l}(n-1) \subset \mathfrak{s l}(n)$.

2. Quantum algebra $\boldsymbol{U}_{q}(\mathfrak{g})$

Let \mathfrak{g} be a simple complex Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra and $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset \mathfrak{h}^{*}$ a basis of simple roots.

Let $(\cdot \mid \cdot)$ be the dual of the Killing form restricted to \mathfrak{h} and $\left(a_{i j}\right)_{i, j=1}^{n}, a_{i j}=\left\langle\alpha_{i} \mid \alpha_{j}\right\rangle=$ $2\left(\alpha_{i} \mid \alpha_{j}\right) /\left(\alpha_{j} \mid \alpha_{j}\right)$, the Cartan matrix of \mathfrak{g}.

For $q \in \mathbb{C}^{*}$ let

$$
\begin{aligned}
& {[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}} \quad[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q} \quad[0]_{q}!=1} \\
& {\left[\begin{array}{c}
m \\
n
\end{array}\right]_{q}=\frac{[m]_{q}!}{[m-n]_{q}![n]_{q}!}}
\end{aligned}
$$

$U_{q}(\mathfrak{g})$ is the associative algebra over \mathbb{C} generated by the elements $k_{i}^{ \pm 1}, e_{i}$ and f_{i}, $i=1, \ldots, n$, with relations

$$
k_{i} k_{i}^{-1}=k_{i}^{-1} k_{i}=1 \quad k_{i} k_{j}=k_{j} k_{i}
$$

$$
\begin{aligned}
& k_{i} e_{j} k_{i}^{-1}=q_{i}^{a_{i j}} e_{j} k_{i} f_{j} k_{i}^{-1}=q_{i}^{-a_{i j}} f_{j} \\
& {\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{k_{i}^{2}-k_{i}^{-2}}{q_{i}^{2}-q_{i}^{-2}}} \\
& \sum_{\nu=0}^{1-a_{i j}}(-1)^{\nu}\left[\begin{array}{c}
1-a_{i j} \\
v
\end{array}\right]_{q_{i}^{2}} e_{i}^{1-a_{i j}-v} e_{j} e_{i}^{v}=0 \quad i \neq j \\
& \sum_{\nu=0}^{1-a_{i j}}(-1)^{\nu}\left[\begin{array}{c}
1-a_{i j} \\
v
\end{array}\right]_{q_{i}^{2}} f_{i}^{1-a_{i j}-v} f_{j} f_{i}^{v}=0 \quad i \neq j
\end{aligned}
$$

where $q_{i}=q^{\left(\alpha_{i} \mid \alpha_{i}\right) / 2}$, so $q_{i}^{a_{i j}}=q_{j}^{a_{j i}}=q^{\left(\alpha_{i} \mid \alpha_{j}\right)}$. Quantum algebras were introduced by Drinfeld [2] and Jimbo [4].
$U_{q}(\mathfrak{g})$ is a Hopf algebra with a coproduct $\Delta: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g})$ defined by $\Delta\left(k_{i}^{ \pm 1}\right)=k_{i}^{ \pm 1} \otimes k_{i}^{ \pm 1} \quad \Delta\left(e_{i}\right)=e_{i} \otimes 1+k_{i}^{-2} \otimes e_{i} \quad \Delta\left(f_{i}\right)=f_{i} \otimes k_{i}^{2}+1 \otimes f_{i}$ and a counit $\epsilon: U_{q}(\mathfrak{g}) \rightarrow \mathbb{C}$ and an antipode $S: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$ defined by

$$
\begin{aligned}
& \epsilon\left(k_{i}\right)=\epsilon\left(k_{i}^{-1}\right)=1 \quad \epsilon\left(e_{i}\right)=\epsilon\left(f_{i}\right)=0 \\
& S\left(k_{i}\right)=k_{i}^{-1} \quad S\left(e_{i}\right)=-k_{i}^{2} e_{i} \quad S\left(f_{i}\right)=-f_{i} k_{i}^{-2} .
\end{aligned}
$$

Recall that Δ and ϵ (respectively S) extend to an algebra (anti) homomorphism of $U_{q}(\mathfrak{g})$.
Let L (respectively R) be the left (respectively right) regular representation of $U_{q}(\mathfrak{g})$. The adjoint representation of $U_{q}(\mathfrak{g})$ is defined by ad $=(L \otimes R)(\operatorname{Id} \otimes S) \Delta$.

From now on we assume that q is not a root of unity.

Notations.

Let $U_{q}\left(\mathfrak{g}_{+}\right) \subset U_{q}(\mathfrak{g})$ (respectively $\left.U_{q}\left(\mathfrak{g}_{-}\right)\right)$be the subalgebra generated by the elements e_{i} (respectively f_{i}), $i=1, \ldots, n$ and $U_{q}(\mathfrak{h})$ the subalgebra generated by the elements $k_{i}^{ \pm 1}$. Then $U_{q}(\mathfrak{h})$ is the algebra of Laurent polynomials in the indeterminates k_{i}.

For $\alpha=\sum_{i=1}^{n} l_{i} \alpha_{i}, l_{i} \in \mathbb{Z}$, set $k_{\alpha}=k_{1}^{l_{1}} \ldots k_{n}^{l_{n}}$.

2.1. Verma modules

Let V be a $U_{q}(\mathfrak{g})$-module (see $[9,17]$). A vector $0 \neq v \in V$ is a weight vector of weight $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in\left(\mathbb{C}^{*}\right)^{n}$, if $k_{i} v=\omega_{i} v$ for all $i=1, \ldots, n$. Such a ω generates a character $\omega: U_{q}(\mathfrak{h}) \rightarrow \mathbb{C}$. Now

$$
V_{\omega}=\left\{v \in V \mid k_{i} v=\omega_{i} v, i=1, \ldots, n\right\}
$$

is the weight subspace corresponding to the weight ω. A vector $0 \neq v \in V_{\omega}$ is a highest weight vector if $e_{i} v=0$ for all $i=1, \ldots, n . V$ is a highest weight module, if it is generated by a highest weight vector.

As in the theory of semisimple Lie algebras for each $\omega \in\left(\mathbb{C}^{*}\right)^{n}$ we can construct the Verma module $M(\omega)$ and the unique irreducible standard cyclic module $V(\omega)$ with highest weight ω.

For each $\lambda \in \mathfrak{h}^{*}$ we can construct a character $q^{\lambda}: U_{q}(\mathfrak{h}) \rightarrow \mathbb{C}$ by defining $q^{\lambda}\left(k_{i}\right)=q^{\left(\lambda \mid \alpha_{i}\right)}$. If V is an irreducible finite-dimensional $U_{q}(\mathfrak{g})$-module, then it is a highest weight module with the highest weight $\omega=\epsilon \cdot q^{\lambda}=\left(\epsilon_{1} q^{\left(\lambda \mid \alpha_{1}\right)}, \ldots, \epsilon_{n} q^{\left(\lambda \mid \alpha_{n}\right)}\right)$, where $\lambda \in \Lambda^{+}$is a dominant integral weight of \mathfrak{g}, and $\epsilon_{i}^{4}=1$. We denote by Ω^{+}the set of weights of this form. For any weight $\omega \in \Omega^{+} V(\omega)$ is finite-dimensional. Furthermore $V\left(\epsilon \cdot q^{\lambda}\right) \cong V\left(q^{\lambda}\right) \otimes \mathbb{C}_{\epsilon}$, where \mathbb{C}_{ϵ} is a one-dimensional $U_{q}(\mathfrak{g})$-module with the highest weight ϵ. Since $U_{q}(\mathfrak{g})$ is a Hopf algebra, we can (using Δ) define a $U_{q}(\mathfrak{g})$-module structure on the tensor product of $U_{q}(\mathfrak{g})$-modules.

2.2. The Harish-Chandra theorem

Let us denote by $Z(\mathfrak{g})$ the centre of $U_{q}(\mathfrak{g})$. Let $v \in M\left(q^{\lambda}\right)$ be a highest weight vector. Then for all $z \in Z(\mathfrak{g}), z v$ is a highest weight vector with weight q^{λ}, so $z v=\chi_{\lambda}(z) v$, where $\chi_{\lambda}: Z(\mathfrak{g}) \rightarrow \mathbb{C}$ is an algebra homomorphism.

Let δ be the half sum of the positive roots of \mathfrak{g} and $W_{\mathfrak{g}}$ the Weyl group of \mathfrak{g}. Let \sim be the equivalence relation in \mathfrak{h}^{*} defined by: $\lambda \sim \mu \Leftrightarrow \exists w \in W_{\mathfrak{g}}$ such that $\lambda+\delta=w(\mu+\delta)$.

Now we can formulate the analogue of the Harish-Chandra theorem, see [15, 18].
Harish-Chandra theorem. If $\chi_{\lambda}=\chi_{\mu}$, then $\lambda \sim \mu$.

2.3. The Cartan-Weyl basis and the Poincaré-Birkhoff-Witt theorem

The system of positive roots $\Delta_{+}^{\mathfrak{g}}$ of \mathfrak{g} is normally ordered if each root which is a sum of other roots lies between its summands, and $\alpha<\beta$ if α is before β in the normal ordering.

The q-analogue of the Cartan-Weyl basis is constructed inductively in the following way [7]. Fix some normal ordering in $\Delta_{+}^{\mathfrak{g}}$. For a simple root α_{i} we define $e_{\alpha_{i}}=e_{i}$. For a non-simple root $\gamma=\alpha+\beta$, where $\alpha, \beta \in \Delta_{+}^{\mathfrak{g}}$ and $\alpha<\beta$ such that there are no other roots α^{\prime} and β^{\prime} between α and β for which $\gamma=\alpha^{\prime}+\beta^{\prime}$, we set

$$
e_{\gamma}=\left[e_{\alpha}, e_{\beta}\right]_{q^{2}} \quad e_{-\gamma}=\left[e_{-\beta}, e_{-\alpha}\right]_{q^{-2}}
$$

if e_{α} and e_{β} are already constructed. Here $\left[e_{\alpha}, e_{\beta}\right]_{q}=e_{\alpha} e_{\beta}-q^{-(\alpha, \beta)} e_{\beta} e_{\alpha}$.
The q-analogues of the Cartan-Weyl generators satisfy commutation relations of the following form. For any $\gamma \in \Delta_{+}^{\mathfrak{g}}$

$$
\left[e_{\gamma}, e_{-\gamma}\right]=a_{\gamma}(q) \frac{k_{\gamma}^{2}-k_{-\gamma}^{2}}{q^{2}-q^{-2}}
$$

For $\alpha, \beta \in \Delta_{+}^{\mathfrak{g}}, \alpha<\beta$

$$
\left[e_{\alpha}, e_{\beta}\right]_{q^{2}}=\sum_{\alpha<\nu_{1}<\cdots<v_{m}<\beta} b_{l_{i}, v_{i}}(q) e_{v_{1}}^{l_{1}} e_{v_{2}}^{l_{2}} \ldots e_{v_{m}}^{l_{m}}
$$

where $\sum_{i} l_{i} v_{i}=\alpha+\beta$, and

$$
\left[e_{\beta}, e_{-\alpha}\right]=\sum_{\substack{v_{1}<\ldots<v_{m}<\alpha \\ \beta<v_{1}^{\prime}<\cdots<v_{r}^{\prime}}} c_{l_{i}, v_{i}, l_{i}^{\prime}, v_{i}^{\prime}}\left(q, k_{\alpha}, k_{\beta}\right) e_{-v_{m}}^{l_{m}} \ldots e_{-v_{1}}^{l_{1}} e_{v_{1}^{\prime}}^{l_{1}^{\prime}} \ldots e_{v_{r}^{\prime}}^{l_{r}^{\prime}}
$$

where $\sum_{i}\left(l_{i}^{\prime} v_{i}^{\prime}-l_{i} v_{i}\right)=\beta-\alpha$. The explicit form of the coefficients a, b and c in the rank two case can be found in [7].

Let $\Delta_{+}^{\mathfrak{g}}=\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}$ be normally ordered. The monomials $e_{-\gamma_{s}}^{n_{s}} \ldots e_{-\gamma_{1}}^{n_{1}} e_{\gamma_{1}}^{m_{1}} \ldots e_{\gamma_{s}}^{m_{s}}$ $k_{1}^{l_{1}} \ldots k_{n}^{l_{n}} ; n_{i}, m_{i} \in \mathbb{N}, k_{i} \in \mathbb{Z}$ form a Poincaré-Birkhoff-Witt basis for $U_{q}(\mathfrak{g})$, see $[8,10,16]$.

3. Step algebra $S_{q}(\mathfrak{g}, \mathfrak{k})$

3.1. Cartan-Weyl generators

Let \mathfrak{g} be a Lie algebra of type A_{n}, B_{n} or D_{n} and $U_{q}(\mathfrak{k}) \subset U_{q}(\mathfrak{g})$ a subalgebra generated by the elements $k_{i}^{ \pm 1}, e_{i}$ and $f_{i}, i=2, \ldots, n$. Then $U_{q}(\mathfrak{k})$ is a q-deformation of Lie algebra \mathfrak{k} of the type A_{n-1}, B_{n-1} and D_{n-1}, respectively.

Next we fix the normal ordering of the positive roots and Cartan-Weyl generators for these algebras. Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of simple roots of \mathfrak{g}; the simple roots of subalgebra $\mathfrak{k} \subset \mathfrak{g}$ are $\left\{\alpha_{2}, \ldots, \alpha_{n}\right\}$.

In the case $\mathfrak{g}=A_{n}$ the positive roots are

$$
\sum_{j=l}^{k} \alpha_{j} \quad l \leqslant k
$$

We fix the normal ordering inductively by setting

$$
\begin{aligned}
& A_{2}:\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\} \\
& A_{n}:\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \ldots, \alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}, \text { normally ordered } A_{n-1}\right\} .
\end{aligned}
$$

Cartan-Weyl generators are defined by

$$
e_{\alpha_{l}+\cdots+\alpha_{k+1}}=\left[e_{\alpha_{l}+\cdots+\alpha_{k}}, e_{\alpha_{k+1}}\right]_{q^{2}} .
$$

The positive roots of $\mathfrak{g}=B_{n}$ are

$$
\begin{aligned}
& \sum_{j=l}^{k-1} \alpha_{j} \quad l<k \leqslant n+1 \\
& \sum_{j=l}^{k-1} \alpha_{j}+2 \sum_{j=k}^{n} \alpha_{j} \quad l<k \leqslant n
\end{aligned}
$$

and the normal ordering is defined as follows:

$$
\begin{aligned}
& B_{2}:\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\} \\
& B_{n}:\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \ldots, \alpha_{1}+\cdots+\alpha_{n}, \alpha_{1}+\cdots+\alpha_{n-1}+2 \alpha_{n}, \ldots, \alpha_{1}+2 \alpha_{2}\right. \\
& \left.\quad+\cdots+2 \alpha_{n}, \text { normally ordered } B_{n-1}\right\}
\end{aligned}
$$

and the Cartan-Weyl elements are

$$
\begin{aligned}
& e_{\alpha_{l}+\cdots+\alpha_{k+1}}=\left[e_{\alpha_{l}+\cdots+\alpha_{k}}, e_{\alpha_{k+1}}\right]_{q^{2}} \\
& e_{\alpha_{l}+\cdots+\alpha_{n-1}+2 \alpha_{n}}=\left[e_{\alpha_{l}+\cdots+\alpha_{n-1}+\alpha_{n}}, e_{\alpha_{n}}\right]_{q^{2}} \\
& e_{\alpha_{l}+\cdots+\alpha_{k-1}+2 \alpha_{k}+\cdots+2 \alpha_{n}}=\left[e_{\alpha_{l}+\cdots+\alpha_{k}+2 \alpha_{k+1}+\cdots+2 \alpha_{n}}, e_{\alpha_{k}}\right]_{q^{2}} .
\end{aligned}
$$

$\mathfrak{g}=D_{n}$ has the positive roots

$$
\begin{aligned}
& \sum_{j=l}^{k-1} \alpha_{j} \quad l<k \leqslant n \text { or } l<n-1, k=n+1 \\
& \sum_{j=l}^{k-1} \alpha_{j}+2 \sum_{j=k}^{n-2} \alpha_{j}+\alpha_{n-1}+\alpha_{n} \quad l<k \leqslant n-2 \\
& \sum_{j=l}^{n-2} \alpha_{j}+\alpha_{n} \quad l \leqslant n-2, \text { and } \alpha_{n} .
\end{aligned}
$$

The normal ordering is

$$
\begin{aligned}
D_{4}:\left\{\alpha_{1}, \alpha_{1}+\right. & \alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{4}, \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{1}+2 \alpha_{2}+\alpha_{3} \\
& \left.+\alpha_{4}, \alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{3}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{2}+\alpha_{4}, \alpha_{4}\right\} \\
D_{n}:\left\{\alpha_{1}, \alpha_{1}+\right. & \alpha_{2}, \ldots, \alpha_{1}+\cdots+\alpha_{n-2}+\alpha_{n-1}, \alpha_{1}+\cdots+\alpha_{n-2}+\alpha_{n}, \alpha_{1} \\
& +\cdots+\alpha_{n-1}+\alpha_{n}, \alpha_{1}+\cdots+\alpha_{n-3}+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}, \ldots, \alpha_{1}+2 \alpha_{2} \\
& \left.+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}, \text { normally ordered } D_{n-1}\right\}
\end{aligned}
$$

and the Cartan-Weyl elements are
$e_{\alpha_{l}+\cdots+\alpha_{k+1}}=\left[e_{\alpha_{l}+\cdots+\alpha_{k}}, e_{\alpha_{k+1}}\right]_{q^{2}} \quad k<n-1$
$e_{\alpha_{l}+\cdots+\alpha_{n-2}+\alpha_{n}}=\left[e_{\alpha_{l}+\cdots+\alpha_{n-2}}, e_{\alpha_{n}}\right]_{q^{2}}$
$e_{\alpha_{l}+\cdots+\alpha_{n-1}+\alpha_{n}}=\left[e_{\alpha_{l}+\cdots+\alpha_{n-2}+\alpha_{n}}, e_{\alpha_{n-1}}\right]_{q^{2}} \quad l<n-2$
$e_{\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}}=\left[e_{\alpha_{n-1}}, e_{\alpha_{n-2}+\alpha_{n},}\right]_{q^{2}}$
$e_{\alpha_{l}+\cdots+\alpha_{n-3}+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}}=\left[e_{\alpha_{l}+\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}}, e_{\alpha_{n-2}}\right]_{q^{2}}$
$e_{\alpha_{l}+\cdots+\alpha_{k-1}+2 \alpha_{k}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}}=\left[e_{\alpha_{l}+\cdots+\alpha_{k}+2 \alpha_{k+1}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}}, e_{\alpha_{k}}\right]_{q^{2}}$.

3.2. Step algebra $\boldsymbol{S}_{q}(\mathfrak{g}, \mathfrak{k})$

From now on we denote by \mathfrak{h} the Cartan subalgebra of \mathfrak{k}, and so $U_{q}(\mathfrak{h})$ is generated by the elements $k_{i}^{ \pm 1}, i=2, \ldots, n$. Let $\mathfrak{k}_{+} \subset U_{q}(\mathfrak{g})$ be the vector space spanned by $\left\{e_{\alpha} \mid \alpha \in \Delta_{+}^{\mathfrak{k}}\right\}$. We define

$$
S_{q}^{\prime}(\mathfrak{g}, \mathfrak{k})=\left\{u \in U_{q}(\mathfrak{g}) \mid \mathfrak{k}_{+} u \subset U_{q}(\mathfrak{g}) \mathfrak{k}_{+}\right\}
$$

and the step algebra

$$
S_{q}(\mathfrak{g}, \mathfrak{k})=S_{q}^{\prime}(\mathfrak{g}, \mathfrak{k}) / U_{q}(\mathfrak{g}) \mathfrak{k}_{+}
$$

$S_{q}(\mathfrak{g}, \mathfrak{k})$ is an adjoint $U_{q}(\mathfrak{h})$-module and it is a direct sum of weight subspaces $S_{q}(\mathfrak{g}, \mathfrak{k})_{q^{\mu}}$. Using the Poincare-Birkhoff-Witt theorem we may split

$$
\begin{equation*}
U_{q}(\mathfrak{g})=U_{1} U_{q}(\mathfrak{h}) \oplus U_{q}\left(\mathfrak{k}_{-}\right) \mathfrak{k}_{-} U_{1} U_{q}(\mathfrak{h}) \oplus U_{q}(\mathfrak{g}) \mathfrak{k}_{+} \tag{1}
\end{equation*}
$$

where $U_{1} \subset U_{q}(\mathfrak{g})$ is the vector space spanned by the monomials $e_{\gamma}^{\bar{n}}=$ $e_{-\gamma_{p}}^{n_{p}} \ldots e_{-\gamma_{1}}^{n_{1}} e_{0}^{n_{0}} e_{\gamma_{1}}^{n_{1}^{\prime}} \ldots e_{\gamma_{p}}^{n_{p}^{\prime}}$ where $\Delta_{+}^{\mathfrak{g}}=\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}$ is normally ordered and $\Delta_{+}^{\mathfrak{g}} \backslash \Delta_{+}^{\mathfrak{k}}=$ $\left\{\gamma_{1}, \ldots, \gamma_{p}\right\}$ and $e_{0}=k_{1} ; n_{i}, n_{i}^{\prime} \in \mathbb{N}, n_{0} \in \mathbb{Z}$.

Let $I_{\omega} \subset U_{q}(\mathfrak{g})$ be the left ideal generated by \mathfrak{k}_{+}and the elements $k_{i}-\omega_{i} \cdot \mathbf{1}, i=2, \ldots, n$ and

$$
N^{\omega}=U_{q}(\mathfrak{g}) / I_{\omega}
$$

N^{ω} is a left $U_{q}(\mathfrak{k})$-module in a natural way. Furthermore, for $u \in U_{q}(\mathfrak{h})$ we define $u(\omega) \in \mathbb{C}$ by $u \equiv u(\omega) \cdot \mathbf{1} \bmod I_{\omega}$. Then $u(\omega)$ is a Laurent polynomial in the variables ω_{i}; it is obtained via the replacement $k_{i} \mapsto \omega_{i}$ in u.

Let $P^{\prime}: U_{q}(\mathfrak{g}) \rightarrow U_{1} U_{q}(\mathfrak{h})$ be the projection on the first summand in (1) and define $P: S_{q}(\mathfrak{g}, \mathfrak{k}) \rightarrow U_{1} U_{q}(\mathfrak{h})$ by $P\left(s+U_{q}(\mathfrak{g}) \mathfrak{k}_{+}\right)=P^{\prime}(s)$.

Theorem 1. The mapping $P: S_{q}(\mathfrak{g}, \mathfrak{k}) \rightarrow U_{1} U_{q}(\mathfrak{h})$ is injective.
Proof. Let $s \in S_{q}(\mathfrak{g}, \mathfrak{k})$ be such that $P(s)=0$. We may assume that s has weight q^{μ}. Now

$$
s=\sum_{\bar{m} \gamma \gg \mu} v_{\bar{m}} e_{\gamma}^{\bar{m}} u_{\bar{m}}
$$

where $\bar{m} \gamma=\left(m_{1}^{\prime}-m_{1}\right) \gamma_{1}+\cdots+\left(m_{p}^{\prime}-m_{p}\right) \gamma_{p}$ and \gg is the order defined by the simple roots of \mathfrak{k} and $v_{\bar{m}} \in U_{q}\left(\mathfrak{k}_{-}\right), u_{\bar{m}} \in U_{q}(\mathfrak{h})$.

If $s \neq 0$, then we choose a weight $\lambda \in \mathfrak{h}^{*}$ such that $\lambda+\mu \in \Lambda^{+}$and $u_{\bar{m}}\left(q^{\lambda}\right) \neq 0$ for some \bar{m}; let \bar{m}_{o} be the one for which $\bar{m}_{o} \gamma$ is minimal. Because $e_{\alpha} s \equiv 0 \bmod U_{q}(\mathfrak{g}) \mathfrak{k}_{+}$for all $\alpha \in \Delta_{+}^{\mathfrak{k}}$, then $v_{\bar{m}_{o}}$ is a highest weight vector of the weight $q^{\lambda+\mu}$ in the $U_{q}(\mathfrak{k})$ Verma module $M\left(q^{\lambda+\bar{m}_{o} \gamma}\right)$. On the other hand $\lambda+\mu \ll \lambda+\bar{m}_{o} \gamma$, a contradiction. So $s=0$.

Let $\left\{\gamma \mid \pm \gamma \in \Delta_{+}^{\mathfrak{g}} \backslash \Delta_{+}^{\mathfrak{k}}\right.$ or $\left.\gamma=0\right\}=\left\{\mu_{1}, \ldots, \mu_{2 p+1}\right\}$ be ordered weight monotonically i.e. if $\mu_{i} \gg \mu_{j}$, then $i>j$. Furthermore, let $\Delta_{+}^{\mathfrak{k}}=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ (normally ordered).

Theorem 2. For each $e_{\mu_{i}}, i=1, \ldots, 2 p+1$, there exists $s_{\mu_{i}} \in S_{q}(\mathfrak{g}, \mathfrak{k})$ such that $s_{\mu_{i}}$ has a weight $q^{\mu_{i}}$ and

$$
P\left(s_{\mu_{i}}\right)=e_{\mu_{i}} u_{i}
$$

where $u_{i} \in U_{q}(\mathfrak{h})$ such that $u_{i}\left(q^{\lambda}\right) \neq 0$ if λ satisfies the following condition:
$(*)$ there exists no $w \in W_{\mathfrak{k}}$ such that $w\left(\lambda+\mu_{i}+\delta\right)=\lambda+\mu_{j}+\delta$ for some $j>i$.
Furthermore, if $s \in S_{q}(\mathfrak{g}, \mathfrak{k})$ such that s has weight $q^{\mu_{i}}$ and $P(s)=e_{\mu_{i}} u, u \in U_{q}(\mathfrak{h})$, then $s \in U_{q}(\mathfrak{h}) s_{\mu_{i}}$.

Remark. If $\lambda+\mu_{i} \in \Lambda^{+}$then λ satisfies condition ($*$).
Proof. We will first prove that there exist unique elements $u_{i j} \in U_{q}\left(\mathfrak{k}_{-}\right)$such that $e_{\mu_{i}}+\sum_{j>i} u_{i j} e_{\mu_{j}} \in N^{q^{\lambda}}$ is a highest weight vector with the weight $q^{\lambda+\mu_{i}}$.

Let $L_{j}^{\lambda} \subset N^{q^{\lambda}}$ be the left $U_{q}(\mathfrak{k})$-module generated by the elements $e_{\mu_{k}}$ with $k \geqslant j$. Using the Poincaré-Birkhoff-Witt theorem and the commutation relations of the CartanWeyl elements, we see that

$$
L_{j}^{\lambda}=\sum_{k \geqslant j} U_{q}\left(\mathfrak{k}_{-}\right) e_{\mu_{k}}
$$

and L_{j}^{λ} is a free $U_{q}\left(\mathfrak{k}_{-}\right)$-module with basis $\left\{e_{\mu_{k}} \mid k \geqslant j\right\}$.
Now $\{0\}=L_{2 p+2}^{\lambda} \subset L_{2 p+1}^{\lambda} \subset \cdots \subset L_{i}^{\lambda}$ and the left $U_{q}(\mathfrak{k})$-module $L_{j}^{\lambda} / L_{j+1}^{\lambda}$ is equivalent with Verma module $M\left(q^{\lambda+\mu_{j}}\right)$ with a highest weight vector $e_{\mu_{j}}+L_{j+1}^{\lambda}$.

Let Z_{j}^{λ} be the kernel of the character $\chi_{\lambda+\mu_{j}}: Z(\mathfrak{k}) \rightarrow \mathbb{C} . Z_{j}^{\lambda} \subset Z(\mathfrak{k})$ is a maximal ideal. If λ satisfies condition $(*)$ then by the Harish-Chandra theorem $Z_{i}^{\lambda} \neq Z_{j}^{\lambda}$ for $j=i+1, \ldots, 2 p+1$; so Z_{i}^{λ} and Z_{j}^{λ} are relatively prime. Then by proposition II 1.4. in [1] the ideals Z_{i}^{λ} and $\prod_{j=i+1}^{2 p+1} Z_{j}^{\lambda}$ are relatively prime; so there exist $a \in Z_{i}^{\lambda}$ and $b \in \prod_{j=i+1}^{p} Z_{j}^{\lambda}$ such that $\mathbf{1}=a+b$.

Since $b L_{i+1}^{\lambda}=\{0\}$, then $b e_{\mu_{i}} \in L_{i}^{\lambda}$ is a highest weight vector with the weight $q^{\lambda+\mu_{i}}$. On the other hand $b e_{\mu_{i}}=e_{\mu_{i}}-a e_{\mu_{i}} \equiv e_{\mu_{i}}-\chi_{\lambda+\mu_{i}}(a) e_{\mu_{i}} \bmod L_{i+1}^{\lambda} \equiv e_{\mu_{i}} \bmod L_{i+1}^{\lambda}$. Because L_{i}^{λ} is a free $U_{q}\left(\mathfrak{k}_{-}\right)$-module with basis $\left\{e_{\mu_{k}} \mid k \geqslant i\right\}$, there exist uniquely determined $u_{i j} \in U_{q}\left(\mathfrak{k}_{-}\right)$such that $b e_{\mu_{i}}=e_{\mu_{i}}+\sum_{j>i} u_{i j} e_{\mu_{j}}$ in $N^{q^{\lambda}}$.

Let \mathfrak{p} be the vector space spanned by the vectors $e_{\mu_{j}} j=1, \ldots, 2 p+1 . U_{q}\left(\mathfrak{k}_{-}\right) \mathfrak{p}$ is an adjoint $U_{q}(\mathfrak{h})$-module; let $\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of the weight space $\left(U_{q}\left(\mathfrak{k}_{-}\right) \mathfrak{p}\right)_{q^{\mu_{i}}}$ consisting of vectors of the form $e_{-\beta_{r}}^{k_{r}} \ldots e_{-\beta_{1}}^{k_{1}} e_{\mu_{j}}$ with $\mu_{i}=\mu_{j}-\sum_{l=1}^{r} k_{l} \beta_{l}$ and $v_{1}=e_{\mu_{i}}$. In the same way, let $\left\{v_{1}^{k}, \ldots, v_{m_{k}}^{k}\right\}$ be a basis of $\left(U_{q}\left(\mathfrak{k}_{-}\right) \mathfrak{p}\right)_{q^{\mu_{i}}+\beta_{k}}$.

For each $k=1, \ldots, r$, there exist elements $p_{l j}^{k} \in U_{q}(\mathfrak{h})$ such that

$$
e_{\beta_{k}} v_{l} \equiv \sum_{j=1}^{m_{k}} v_{j}^{k} p_{l j}^{k} \bmod U_{q}(\mathfrak{g}) \mathfrak{k}_{+} .
$$

Since the linear mapping $\varphi: U_{q}\left(\mathfrak{k}_{-}\right) \mathfrak{p} \otimes U_{q}(\mathfrak{h}) \rightarrow U_{q}(\mathfrak{g}), \varphi\left(\sum_{l} w_{l} \otimes u_{l}\right)=\sum_{l} w_{l} u_{l}$ is injective and $\operatorname{im} \varphi \cap U_{q}(\mathfrak{g}) \mathfrak{k}_{+}=\{0\}$, we see that for $q_{1}, \ldots, q_{m} \in U_{q}(\mathfrak{h})$

$$
\begin{equation*}
e_{\beta_{k}} \sum_{j=1}^{m} v_{j} q_{j} \equiv 0 \bmod U_{q}(\mathfrak{g}) \mathfrak{k}_{+} \tag{2}
\end{equation*}
$$

for all $k=1, \ldots, r$ if and only if

$$
\left[\begin{array}{ccc}
p_{11}^{k} & \cdots & p_{1 m}^{k} \\
\vdots & & \vdots \\
p_{m_{k} 1}^{k} & \cdots & p_{m_{k} m}^{k}
\end{array}\right]\left[\begin{array}{c}
q_{1} \\
\vdots \\
q_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

for all $k=1, \ldots, r$. Combining these equations together and doing some renumbering we obtain the following. There exist elements $p_{l j} \in U_{q}(\mathfrak{h})$ such that (2) holds if and only if

$$
\left[\begin{array}{ccc}
p_{11} & \cdots & p_{1 m} \tag{3}\\
\vdots & & \vdots \\
p_{t 1} & \cdots & p_{t m}
\end{array}\right]\left[\begin{array}{c}
q_{1} \\
\vdots \\
q_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

where $t=\sum_{k=1}^{r} m_{k}$.
According to the first part of the proof we see that the equation

$$
\left[\begin{array}{ccc}
p_{11}\left(q^{\lambda}\right) & \cdots & p_{1 m}\left(q^{\lambda}\right) \\
\vdots & & \vdots \\
p_{t 1}\left(q^{\lambda}\right) & \cdots & p_{t m}\left(q^{\lambda}\right)
\end{array}\right]\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

has a unique solution $\left(\xi_{1}, \ldots, \xi_{m}\right) \in \mathbb{C}^{m}$ with $\xi_{1}=1$, if λ satisfies condition $(*)$, and so the rank of matrix $\left[p_{l j}\left(q^{\lambda}\right)\right.$] is $m-1$ for all λ that satisfy $(*)$. The set of weights $\omega=q^{\lambda}$ for which λ does not satisfy $(*)$ is Zariski-closed in $\left(\mathbb{C}^{*}\right)^{n-1}$, and so the set of weights $\omega=q^{\lambda}$ for which λ satisfy $(*)$ is Zariski-dense. So the rank of the matrix [$p_{l j}$] is $m-1$ and equation (3) has a solution $\left(q_{1}, \ldots, q_{m}\right)$ with $q_{1} \neq 0$. Hence there exist $q_{1}, \ldots, q_{m} \in U_{q}(\mathfrak{h})$ with $q_{1} \neq 0$ such that $e_{\beta_{k}} \sum_{j=1}^{m} v_{j} q_{j} \equiv 0 \bmod U_{q}(\mathfrak{g}) \mathfrak{k}_{+}$for all $k=1, \ldots, r$.

Let p be an irreducible factor of q_{1}. If $p\left(q^{\lambda}\right)=0$ for λ satisfying $(*)$, then by the uniqueness of the solution we get $q_{j}\left(q^{\lambda}\right)=0$ for all j. Using Hilbert's Nullstellensatz we see that p is also a factor of each q_{j}, and so there is a solution of (3), such that $q_{1}\left(q^{\lambda}\right) \neq 0$ for all λ satisfying $(*)$. Now let $\left(q_{1}, \ldots, q_{m}\right)$ be a solution of (3) such that the q_{i} 's have no common irreducible factors. Now we have proved the theorem with $u_{i}=q_{1}$.

Let $S_{q}^{0}(\mathfrak{g}, \mathfrak{k}) \subset S_{q}(\mathfrak{g}, \mathfrak{k})$ be the subalgebra generated by $s_{\mu_{i}}$'s and $U_{q}(\mathfrak{h})$.
Remark. In practice, the steps $s_{\mu_{i}}$ can be constructed by straightforward computation. For the quantum algebra pairs $U_{q}(\mathfrak{s l}(n-1)) \subset U_{q}(\mathfrak{s l}(n))$ it has been done in [6].

3.3. $\boldsymbol{U}_{\boldsymbol{q}}(\mathfrak{k})$-finite $\boldsymbol{U}_{\boldsymbol{q}}(\mathfrak{g})$-modules

Let $\Lambda \subset \mathfrak{h}^{*}$ be the set of integral weights, i.e. the weights for which $\left\langle\lambda \mid \alpha_{j}\right\rangle \in \mathbb{Z}, j=2, \ldots, n$ and let Ω be the set of weights of the form $\omega=\epsilon \cdot q^{\lambda}, \lambda \in \Lambda$ and $\epsilon_{i}^{4}=1$. We define a partial ordering in Ω by setting $\epsilon \cdot q^{\mu}<\epsilon \cdot q^{\lambda}$ if the first non-zero element in the sequence $\left\langle\lambda-\mu \mid \alpha_{2}\right\rangle, \ldots,\left\langle\lambda-\mu \mid \alpha_{n}\right\rangle$ is positive.
$U_{q}(\mathfrak{g})$-module V is $U_{q}(\mathfrak{k})$-finite if it is a sum of irreducible finite-dimensional $U_{q}(\mathfrak{k})$ modules. Let V^{ω} be the sum of all irreducible $U_{q}(\mathfrak{k})$-submodules with highest weight $\omega \in \Omega^{+}$. We denote by $V^{+} \subset V$ the subspace which is annihilated by \mathfrak{k}_{+}and $V_{\omega}^{+}=V^{+} \cap V^{\omega}$.

Let D be the commutant of $U_{q}(\mathfrak{h})$ in $S_{q}^{0}(\mathfrak{g}, \mathfrak{k})$. Now V^{+}is an $S_{q}(\mathfrak{g}, \mathfrak{k})$-module and V_{ω}^{+} a D-module in a natural way.

Theorem 3. If V is an irreducible $U_{q}(\mathfrak{k})$-finite $U_{q}(\mathfrak{g})$ module and $0 \neq v \in V^{+}$, then $V^{+}=S_{q}^{0}(\mathfrak{g}, \mathfrak{k}) v$.

Proof. Because V is irreducible we need to show that $V^{\prime}=U_{q}\left(\mathfrak{k}_{-}\right) S_{q}^{0}(\mathfrak{g}, \mathfrak{k}) v$ is $U_{q}(\mathfrak{g})$ invariant. For this it is sufficient to show that for any $v^{\prime} \in V^{\prime}, e_{\mu_{k}} v^{\prime} \in V^{\prime}$ for $k=1, \ldots, 2 p+1$.

Let $v^{\prime}=u s v \in V^{\prime}, u \in U_{q}\left(\mathfrak{k}_{-}\right), s \in S_{q}^{0}(\mathfrak{g}, \mathfrak{k})$. Using the commutation relations of Cartan-Weyl generators we see that

$$
e_{\mu_{k}} v^{\prime}=\sum_{i=1}^{2 p+1} u_{i} e_{\mu_{i}} s v \quad u_{i} \in U_{q}\left(\mathfrak{k}_{-}\right)
$$

So we need only show that $e_{\mu_{i}} v^{\prime} \in V^{\prime}$ for any $v^{\prime} \in S_{q}^{0}(\mathfrak{g}, \mathfrak{k}) v$. We do this by induction. Clearly we may take $s_{\mu_{2 p+1}}=e_{\mu_{2 p+1}}$ so

$$
e_{\mu_{2 p+1}} v^{\prime}=s_{\mu_{2 p+1}} v^{\prime}
$$

Assume that $e_{\mu_{i}} v^{\prime} \in V^{\prime}$ for all $i>k$. Because $v^{\prime} \in V^{+}$we may assume that v^{\prime} has weight q^{λ} with $\lambda \in \Lambda^{+}$.

If $\lambda+\mu_{k} \in \Lambda^{+}$, then by theorem 2

$$
e_{\mu_{k}} u_{k}\left(q^{\lambda}\right) v^{\prime}=s_{\mu_{k}} v^{\prime}-\sum_{j>k} v_{j k} u_{j k}\left(q^{\lambda}\right) e_{\mu_{j}} v^{\prime}
$$

where $u_{k}\left(q^{\lambda}\right) \neq 0$ and $v_{j k} \in U_{q}\left(\mathfrak{k}_{-}\right)$; so $e_{\mu_{k}} v^{\prime} \in V^{\prime}$.
If $\lambda+\mu_{k} \notin \Lambda^{+}$, then

$$
e_{\mu_{k}} v^{\prime} \in \sum_{j>k} U_{q}\left(\mathfrak{k}_{-}\right) e_{\mu_{j}} v^{\prime}=L_{k+1}
$$

Otherwise $e_{\mu_{k}} v^{\prime}+L_{k+1}$ would be a highest weight vector of finite-dimensional $U_{q}(\mathfrak{k})$-module L_{k} / L_{k+1} with weight $q^{\lambda+\mu_{k}}$; a contradiction.

For each $\omega \in \Omega^{+}$, let $M_{\omega}=\left\{u \in U_{q}(\mathfrak{g}) \mid u V_{\omega}^{+} \subset V_{\omega^{\prime}}^{+}\right.$for some $\left.\omega^{\prime}<\omega\right\}$. Denote $D_{\omega}=D / D \cap U_{q}(\mathfrak{g}) M_{\omega} . V^{\omega}$ is a minimal component of a $U_{q}(\mathfrak{g})$-module V if $V^{\omega} \neq\{0\}$ and $V^{\omega^{\prime}}=0$ for all $\omega^{\prime}<\omega, \omega^{\prime} \in \Omega^{+}$. If V^{ω} is a minimal component of V, then V_{ω}^{+}is a D_{ω}-module in a natural way. It follows from our choice of the partial ordering in Ω that any irreducible $U_{q}(\mathfrak{k})$-finite $U_{q}(\mathfrak{g})$-module has a unique minimal component.

In [6] we have proved the following theorem.
Theorem 4. The map $V \mapsto V_{\omega}^{+}$gives a (1-1)-correspondence between the set $R(\omega)$ of equivalence classes of irreducible $U_{q}(\mathfrak{k})$-finite $U_{q}(\mathfrak{g})$-modules with a minimal component V^{ω} and the set $\mathrm{T}(\omega)$ of equivalence classes of irreducible D_{ω}-modules.

This theorem is useful when classifying the $U_{q}(\mathfrak{k})$-finite $U_{q}(\mathfrak{g})$-modules since it is usually quite simple to determine the structure of D_{ω}. In [6] we have done it in the $U_{q}(\mathfrak{s l}(n-1)) \subset U_{q}(\mathfrak{s l}(n))$ case. There we have used the explicit forms of the elements $s_{\mu_{i}}$. However, that is probably not necessary, since methods analogous to those used in [11] can obviously also be used in the q-deformed case.

References

[1] Bourbaki N 1961 Éléments de mathématique, algèbre commutative (Paris: Hermann) ch 1-2
[2] Drinfeld V G 1985 Hopf algebra and the quantum Yang-Baxter equation Sov. Math. Dokl. 32 254-8
[3] van den Hombergh A 1976 Harish-Chandra modules and representations of step algebras PhD Thesis Department of Mathematics, Katholieke Universiteit te Nijmegen, Netherlands
[4] Jimbo M 1985 A q-difference analogue of $U(\mathcal{G})$ and the Yang-Baxter equation Lett. Math. Phys. 10 63-9
[5] Kekäläinen P 1988 On irreducible A_{2}-finite G_{2}-modules J. Algebra 117 72-80
[6] Kekäläinen P 1992 Step algebras of quantum s (n) J. Algebra 150 245-53
[7] Khoroshkin S M and Tolstoy V N 1991 Universal R-matrix for quantized (super)algebras Commun. Math. Phys. 141 599-617
[8] Lusztig G 1990 Finite dimensional Hopf algebras arising from quantized universal enveloping algebras J. Am. Math. Soc. 3 257-96
[9] Lusztig G 1988 Quantum deformations of certain simple modules over enveloping algebras Adv. Math. 70 237-249
[10] Lusztig G 1990 Quantum groups at roots of 1 Geom. Dedicata 35 89-113
[11] Mickelsson J 1977 A description of discrete series using step algebras Math. Scand. 41 63-78
[12] Mickelsson J 1980 Discrete series of Lie superalgebras Rev. Mod. Phys. 18 197-210
[13] Mickelsson J 1984 Representations of Kac-Moody algebras by step algebras J. Math. Phys. 26 377-82
[14] Mickelsson J 1973 Step algebras of semisimple Lie algebras Rev. Mod. Phys. 4 307-18
[15] Rosso M 1990 Analogue de la forme de Killing et du Théorème d'Harish-Chandra pour les groupes quantiques Ann. Sci. Éc. Norm. Sup. 4 e Série 23 445-67
[16] Rosso M 1989 An analogue of PBW theorem and the universal R-matrix for $U_{h} \operatorname{sl}(N+1)$ Commun. Math. Phys. 124 307-18
[17] Rosso M 1988 Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra Commun. Math. Phys. 117 581-93
[18] Tanisaki T 1990 Harish-Chandra isomorphism for quantum algebras Commun. Math. Phys. 127 555-71
[19] Zhelobenko D P 1988 Extremal projectors and generalized Mickelsson algebras over reductive Lie algebras Izv. Akad. Nauk. SSSR Ser. Mat. 52 758-73 (in Russian) (Engl. transl. 1989 Math. USSR Izv. 33)
[20] Zhelobenko D P 1983 S-algebras and Verma modules over reductive Lie algebras Dokl. Akad. Nauk. SSSR 273 785-8 (in Russian) (Engl. transl. 1983 Sov. Math. Dokl. 28 696-700)

