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Step algebras of quantum algebras of typeA, B and D

Pekka Kek̈aläinen
University of Jyv̈askyl̈a, Department of Mathematics, Seminaarinkatu 15, SF-40100, Finland

Received 2 June 1995

Abstract. We study the step algebras for the quantum algebras corresponding to the Lie algebra
pairsAn−1 ⊂ An, Bn−1 ⊂ Bn andDn−1 ⊂ Dn.

1. Introduction

In [14] Mickelsson introduced the step algebraS(k, g) of the Lie algebra pair(k, g), where
k is a semisimple Lie subalgebra of a finite-dimensional Lie algebrag. The theory of step
algebras was later also developed by van den Hombergh [3] and Zhelobenko [19, 20]. Step
algebra methods have been applied to the representation theory of semisimple Lie algebras
[11, 5], Lie superalgebras [12] and Kac–Moody algebras [13].

A step algebra is defined byS(g, k) = S ′(g, k)/U(g)k+, where S ′(g, k) = {u ∈
U(g)|k+u ⊂ U(g)k+}. Step algebras are useful for studying irreduciblek-finite g-modules.
g-moduleV is k-finite, if it is a direct sum of finite-dimensionalk-modules. LetV + be
the set ofk-maximal vectors inV . Step algebraS(g, k) operates inV + in a natural way.
One basic result in the theory of step algebras is the existence of a certain subalgebra
S0(g, k) ⊂ S(g, k), which generates the wholeV + from a singlev ∈ V +.

In this paper we study the step algebras ofq-deformations of the following Lie algebra
pairs: An−1 ⊂ An, Bn−1 ⊂ Bn andDn−1 ⊂ Dn. As the main result we prove the existence
of the subalgebraS0(g, k) in theseq-deformed cases. Earlier in [6] we studied the step
algebra of theq-deformation of the Lie algebra pairsl(n − 1) ⊂ sl(n).

2. Quantum algebraUq(g)

Let g be a simple complex Lie algebra,h ⊂ g a Cartan subalgebra and{α1, . . . , αn} ⊂ h∗

a basis of simple roots.
Let (·|·) be the dual of the Killing form restricted toh and (aij )

n
i,j=1, aij = 〈αi |αj 〉 =

2(αi |αj )/(αj |αj ), the Cartan matrix ofg.
For q ∈ C∗ let

[n]q = qn − q−n

q − q−1
[n]q ! = [1]q [2]q · · · [n]q [0]q ! = 1[

m

n

]
q

= [m]q !

[m − n]q ![n]q !
.

Uq(g) is the associative algebra overC generated by the elementsk±1
i , ei and fi ,

i = 1, . . . , n, with relations

kik
−1
i = k−1

i ki = 1 kikj = kj ki

0305-4470/96/051045+09$19.50c© 1996 IOP Publishing Ltd 1045



1046 P Kekäläinen

kiej k
−1
i = q

aij

i ej kifj k
−1
i = q

−aij

i fj

[ei, fj ] = δij

k2
i − k−2

i

q2
i − q−2

i

1−aij∑
ν=0

(−1)ν
[

1 − aij

ν

]
q2

i

e
1−aij −ν

i ej e
ν
i = 0 i 6= j

1−aij∑
ν=0

(−1)ν
[

1 − aij

ν

]
q2

i

f
1−aij −ν

i fjf
ν
i = 0 i 6= j

where qi = q(αi |αi)/2, so q
aij

i = q
aji

j = q(αi |αj ). Quantum algebras were introduced by
Drinfeld [2] and Jimbo [4].

Uq(g) is a Hopf algebra with a coproduct1 : Uq(g) → Uq(g) ⊗ Uq(g) defined by

1(k±1
i ) = k±1

i ⊗ k±1
i 1(ei) = ei ⊗ 1 + k−2

i ⊗ ei 1(fi) = fi ⊗ k2
i + 1 ⊗ fi

and a counitε : Uq(g) → C and an antipodeS : Uq(g) → Uq(g) defined by

ε(ki) = ε(k−1
i ) = 1 ε(ei) = ε(fi) = 0

S(ki) = k−1
i S(ei) = −k2

i ei S(fi) = −fik
−2
i .

Recall that1 andε (respectivelyS) extend to an algebra (anti) homomorphism ofUq(g).
Let L (respectivelyR) be the left (respectively right) regular representation ofUq(g).

The adjoint representation ofUq(g) is defined by ad= (L ⊗ R)(Id ⊗S)1.
From now on we assume thatq is not a root of unity.

Notations.
Let Uq(g+) ⊂ Uq(g) (respectivelyUq(g−)) be the subalgebra generated by the elements

ei (respectivelyfi), i = 1, . . . , n andUq(h) the subalgebra generated by the elementsk±1
i .

ThenUq(h) is the algebra of Laurent polynomials in the indeterminateski .
For α = ∑n

i=1 liαi , li ∈ Z, setkα = k
l1
1 . . . kln

n .

2.1. Verma modules

Let V be aUq(g)-module (see [9, 17]). A vector 06= v ∈ V is a weight vector of weight
ω = (ω1, . . . , ωn) ∈ (C∗)n, if kiv = ωiv for all i = 1, . . . , n. Such aω generates a character
ω : Uq(h) → C. Now

Vω = {v ∈ V |kiv = ωiv, i = 1, . . . , n}
is the weight subspace corresponding to the weightω. A vector 0 6= v ∈ Vω is a highest
weight vector ifeiv = 0 for all i = 1, . . . , n. V is a highest weight module, if it is generated
by a highest weight vector.

As in the theory of semisimple Lie algebras for eachω ∈ (C∗)n we can construct the
Verma moduleM(ω) and the unique irreducible standard cyclic moduleV (ω) with highest
weight ω.

For eachλ ∈ h∗ we can construct a characterqλ : Uq(h) → C by defining
qλ(ki) = q(λ|αi). If V is an irreducible finite-dimensionalUq(g)-module, then it is a
highest weight module with the highest weightω = ε · qλ = (ε1q

(λ|α1), . . . , εnq
(λ|αn)),

whereλ ∈ 3+ is a dominant integral weight ofg, andε4
i = 1. We denote by�+ the set

of weights of this form. For any weightω ∈ �+ V (ω) is finite-dimensional. Furthermore
V (ε · qλ) ∼= V (qλ) ⊗ Cε , whereCε is a one-dimensionalUq(g)-module with the highest
weightε. SinceUq(g) is a Hopf algebra, we can (using1) define aUq(g)-module structure
on the tensor product ofUq(g)-modules.
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2.2. The Harish–Chandra theorem

Let us denote byZ(g) the centre ofUq(g). Let v ∈ M(qλ) be a highest weight vector.
Then for allz ∈ Z(g), zv is a highest weight vector with weightqλ, sozv = χλ(z)v, where
χλ : Z(g) → C is an algebra homomorphism.

Let δ be the half sum of the positive roots ofg andWg the Weyl group ofg. Let ∼ be
the equivalence relation inh∗ defined by:λ ∼ µ ⇔ ∃w ∈ Wg such thatλ + δ = w(µ + δ).

Now we can formulate the analogue of the Harish–Chandra theorem, see [15, 18].

Harish–Chandra theorem. If χλ = χµ, thenλ ∼ µ.

2.3. The Cartan–Weyl basis and the Poincar´e–Birkhoff–Witt theorem

The system of positive roots1g
+ of g is normally ordered if each root which is a sum of

other roots lies between its summands, andα < β if α is beforeβ in the normal ordering.
The q-analogue of the Cartan–Weyl basis is constructed inductively in the following

way [7]. Fix some normal ordering in1g
+. For a simple rootαi we defineeαi

= ei . For a
non-simple rootγ = α + β, whereα, β ∈ 1

g
+ andα < β such that there are no other roots

α′ andβ ′ betweenα andβ for which γ = α′ + β ′, we set

eγ = [eα, eβ ]q2 e−γ = [e−β, e−α]q−2

if eα andeβ are already constructed. Here [eα, eβ ]q = eαeβ − q−(α,β)eβeα.
The q-analogues of the Cartan–Weyl generators satisfy commutation relations of the

following form. For anyγ ∈ 1
g
+

[eγ , e−γ ] = aγ (q)
k2
γ − k2

−γ

q2 − q−2
.

For α, β ∈ 1
g
+, α < β

[eα, eβ ]q2 =
∑

α<ν1<···<νm<β

bli ,νi
(q)el1

ν1
el2
ν2

. . . elm
νm

where
∑

i liνi = α + β, and

[eβ, e−α] =
∑

ν1<···<νm<α
β<ν ′

1<···<ν ′
r

cli ,νi ,l
′
i ,ν

′
i
(q, kα, kβ)e

lm−νm
. . . e

l1−ν1
e
l′1
ν ′

1
. . . e

l′r
ν ′
r

where
∑

i (l
′
iν

′
i − liνi) = β − α. The explicit form of the coefficientsa, b andc in the rank

two case can be found in [7].
Let 1

g
+ = {γ1, . . . , γs} be normally ordered. The monomialsens−γs

. . . e
n1−γ1

em1
γ1

. . . ems
γs

k
l1
1 . . . kln

n ; ni, mi ∈ N, ki ∈ Z form a Poincaŕe–Birkhoff–Witt basis forUq(g), see [8, 10, 16].

3. Step algebraSq(g, k)

3.1. Cartan–Weyl generators

Let g be a Lie algebra of typeAn, Bn or Dn andUq(k) ⊂ Uq(g) a subalgebra generated by
the elementsk±1

i , ei andfi , i = 2, . . . , n. ThenUq(k) is a q-deformation of Lie algebrak
of the typeAn−1, Bn−1 andDn−1, respectively.

Next we fix the normal ordering of the positive roots and Cartan–Weyl generators for
these algebras. Let{α1, . . . , αn} be a set of simple roots ofg; the simple roots of subalgebra
k ⊂ g are{α2, . . . , αn}.



1048 P Kekäläinen

In the caseg = An the positive roots are

k∑
j=l

αj l 6 k.

We fix the normal ordering inductively by setting

A2 : {α1, α1 + α2, α2}
An : {α1, α1 + α2, . . . , α1 + α2 + · · · + αn, normally orderedAn−1}.

Cartan–Weyl generators are defined by

eαl+···+αk+1 = [eαl+···+αk
, eαk+1]q2.

The positive roots ofg = Bn are

k−1∑
j=l

αj l < k 6 n + 1

k−1∑
j=l

αj + 2
n∑

j=k

αj l < k 6 n

and the normal ordering is defined as follows:

B2 : {α1, α1 + α2, α1 + 2α2, α2}
Bn : {α1, α1 + α2, . . . , α1 + · · · + αn, α1 + · · · + αn−1 + 2αn, . . . , α1 + 2α2

+ · · · + 2αn, normally orderedBn−1}
and the Cartan–Weyl elements are

eαl+···+αk+1 = [eαl+···+αk
, eαk+1]q2

eαl+···+αn−1+2αn
= [eαl+···+αn−1+αn

, eαn
]q2

eαl+···+αk−1+2αk+···+2αn
= [eαl+···+αk+2αk+1+···+2αn

, eαk
]q2.

g = Dn has the positive roots

k−1∑
j=l

αj l < k 6 n or l < n − 1, k = n + 1

k−1∑
j=l

αj + 2
n−2∑
j=k

αj + αn−1 + αn l < k 6 n − 2

n−2∑
j=l

αj + αn l 6 n − 2, andαn.

The normal ordering is

D4 : {α1, α1 + α2, α1 + α2 + α3, α1 + α2 + α4, α1 + α2 + α3 + α4, α1 + 2α2 + α3

+α4, α2, α2 + α3, α3, α2 + α3 + α4, α2 + α4, α4}
Dn : {α1, α1 + α2, . . . , α1 + · · · + αn−2 + αn−1, α1 + · · · + αn−2 + αn, α1

+ · · · + αn−1 + αn, α1 + · · · + αn−3 + 2αn−2 + αn−1 + αn, . . . , α1 + 2α2

+ · · · + 2αn−2 + αn−1 + αn, normally orderedDn−1}
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and the Cartan–Weyl elements are

eαl+···+αk+1 = [eαl+···+αk
, eαk+1]q2 k < n − 1

eαl+···+αn−2+αn
= [eαl+···+αn−2, eαn

]q2

eαl+···+αn−1+αn
= [eαl+···+αn−2+αn

, eαn−1]q2 l < n − 2

eαn−2+αn−1+αn
= [eαn−1, eαn−2+αn,]q2

eαl+···+αn−3+2αn−2+αn−1+αn
= [eαl+αn−2+αn−1+αn

, eαn−2]q2

eαl+···+αk−1+2αk+···+2αn−2+αn−1+αn
= [eαl+···+αk+2αk+1+···+2αn−2+αn−1+αn

, eαk
]q2.

3.2. Step algebraSq(g, k)

From now on we denote byh the Cartan subalgebra ofk, and soUq(h) is generated by the
elementsk±1

i , i = 2, . . . , n. Let k+ ⊂ Uq(g) be the vector space spanned by{eα|α ∈ 1k
+}.

We define

S ′
q(g, k) = {u ∈ Uq(g)|k+u ⊂ Uq(g)k+}

and the step algebra

Sq(g, k) = S ′
q(g, k)/Uq(g)k+.

Sq(g, k) is an adjointUq(h)-module and it is a direct sum of weight subspacesSq(g, k)qµ .
Using the Poincaŕe–Birkhoff–Witt theorem we may split

Uq(g) = U1Uq(h) ⊕ Uq(k−)k−U1Uq(h) ⊕ Uq(g)k+ (1)

where U1 ⊂ Uq(g) is the vector space spanned by the monomialsen̄
γ =

e
np

−γp
. . . e

n1−γ1
e
n0
0 e

n′
1

γ1 . . . e
n′

p

γp
where 1

g
+ = {γ1, . . . , γs} is normally ordered and1g

+\1k
+ =

{γ1, . . . , γp} ande0 = k1; ni, n
′
i ∈ N, n0 ∈ Z.

Let Iω ⊂ Uq(g) be the left ideal generated byk+ and the elementski −ωi ·1, i = 2, . . . , n

and

Nω = Uq(g)/Iω.

Nω is a leftUq(k)-module in a natural way. Furthermore, foru ∈ Uq(h) we defineu(ω) ∈ C
by u ≡ u(ω)·1 modIω. Thenu(ω) is a Laurent polynomial in the variablesωi ; it is obtained
via the replacementki 7→ ωi in u.

Let P ′ : Uq(g) → U1Uq(h) be the projection on the first summand in (1) and define
P : Sq(g, k) → U1Uq(h) by P(s + Uq(g)k+) = P ′(s).

Theorem 1. The mappingP : Sq(g, k) → U1Uq(h) is injective.

Proof. Let s ∈ Sq(g, k) be such thatP(s) = 0. We may assume thats has weightqµ.
Now

s =
∑

m̄γ�µ

vm̄em̄
γ um̄

wherem̄γ = (m′
1 − m1)γ1 + · · · + (m′

p − mp)γp and� is the order defined by the simple
roots ofk andvm̄ ∈ Uq(k−), um̄ ∈ Uq(h).

If s 6= 0, then we choose a weightλ ∈ h∗ such thatλ + µ ∈ 3+ andum̄(qλ) 6= 0 for
somem̄; let m̄o be the one for whichm̄oγ is minimal. Becauseeαs ≡ 0 modUq(g)k+ for
all α ∈ 1k

+, then vm̄o
is a highest weight vector of the weightqλ+µ in the Uq(k) Verma

moduleM(qλ+m̄oγ ). On the other handλ + µ � λ + m̄oγ , a contradiction. Sos = 0. �
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Let {γ | ± γ ∈ 1
g
+\1k

+ or γ = 0} = {µ1, . . . , µ2p+1} be ordered weight monotonically
i.e. if µi � µj , theni > j . Furthermore, let1k

+ = {β1, . . . , βr} (normally ordered).

Theorem 2. For eacheµi
, i = 1, . . . , 2p + 1, there existssµi

∈ Sq(g, k) such thatsµi
has

a weightqµi and

P(sµi
) = eµi

ui

whereui ∈ Uq(h) such thatui(q
λ) 6= 0 if λ satisfies the following condition:

(∗) there exists now ∈ Wk such thatw(λ + µi + δ) = λ + µj + δ for somej > i.

Furthermore, ifs ∈ Sq(g, k) such that s has weightqµi and P(s) = eµi
u, u ∈ Uq(h),

thens ∈ Uq(h)sµi
.

Remark. If λ + µi ∈ 3+ thenλ satisfies condition (∗).

Proof. We will first prove that there exist unique elementsuij ∈ Uq(k−) such that
eµi

+ ∑
j>i uij eµj

∈ Nqλ

is a highest weight vector with the weightqλ+µi .

Let Lλ
j ⊂ Nqλ

be the leftUq(k)-module generated by the elementseµk
with k > j .

Using the Poincaŕe–Birkhoff–Witt theorem and the commutation relations of the Cartan–
Weyl elements, we see that

Lλ
j =

∑
k>j

Uq(k−)eµk

andLλ
j is a freeUq(k−)-module with basis{eµk

|k > j}.
Now {0} = Lλ

2p+2 ⊂ Lλ
2p+1 ⊂ · · · ⊂ Lλ

i and the leftUq(k)-moduleLλ
j /Lλ

j+1 is equivalent
with Verma moduleM(qλ+µj ) with a highest weight vectoreµj

+ Lλ
j+1.

Let Zλ
j be the kernel of the characterχλ+µj

: Z(k) → C. Zλ
j ⊂ Z(k) is a maximal

ideal. If λ satisfies condition (∗) then by the Harish–Chandra theoremZλ
i 6= Zλ

j for
j = i + 1, . . . , 2p+1; soZλ

i andZλ
j are relatively prime. Then by proposition II 1.4. in [1]

the idealsZλ
i and

∏2p+1
j=i+1 Zλ

j are relatively prime; so there exista ∈ Zλ
i andb ∈ ∏p

j=i+1 Zλ
j

such that1 = a + b.
SincebLλ

i+1 = {0}, thenbeµi
∈ Lλ

i is a highest weight vector with the weightqλ+µi .
On the other handbeµi

= eµi
− aeµi

≡ eµi
− χλ+µi

(a)eµi
modLλ

i+1 ≡ eµi
modLλ

i+1.
BecauseLλ

i is a freeUq(k−)-module with basis{eµk
|k > i}, there exist uniquely determined

uij ∈ Uq(k−) such thatbeµi
= eµi

+ ∑
j>i uij eµj

in Nqλ

.
Let p be the vector space spanned by the vectorseµj

j = 1, . . . , 2p + 1. Uq(k−)p
is an adjointUq(h)-module; let{v1, . . . , vm} be a basis of the weight space(Uq(k−)p)qµi

consisting of vectors of the formekr

−βr
. . . e

k1
−β1

eµj
with µi = µj − ∑r

l=1 klβl andv1 = eµi
.

In the same way, let{vk
1, . . . , v

k
mk

} be a basis of(Uq(k−)p)qµi+βk .
For eachk = 1, . . . , r, there exist elementspk

lj ∈ Uq(h) such that

eβk
vl ≡

mk∑
j=1

vk
j pk

lj modUq(g)k+.

Since the linear mappingϕ : Uq(k−)p ⊗ Uq(h) → Uq(g), ϕ(
∑

l wl ⊗ ul) = ∑
l wlul is

injective and imϕ ∩ Uq(g)k+ = {0}, we see that forq1, . . . , qm ∈ Uq(h)

eβk

m∑
j=1

vjqj ≡ 0 modUq(g)k+ (2)
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for all k = 1, . . . , r if and only if pk
11 . . . pk

1m

...
...

pk
mk1 . . . pk

mkm

  q1
...

qm

 =
 0

...

0


for all k = 1, . . . , r. Combining these equations together and doing some renumbering we
obtain the following. There exist elementsplj ∈ Uq(h) such that (2) holds if and only if p11 . . . p1m

...
...

pt1 . . . ptm

  q1
...

qm

 =
 0

...

0

 (3)

wheret = ∑r
k=1 mk.

According to the first part of the proof we see that the equation p11(q
λ) . . . p1m(qλ)

...
...

pt1(q
λ) . . . ptm(qλ)

  ξ1
...

ξm

 =
 0

...

0


has a unique solution(ξ1, . . . , ξm) ∈ Cm with ξ1 = 1, if λ satisfies condition (∗), and so
the rank of matrix [plj (q

λ)] is m − 1 for all λ that satisfy (∗). The set of weightsω = qλ

for which λ does not satisfy (∗) is Zariski-closed in(C∗)n−1, and so the set of weights
ω = qλ for which λ satisfy (∗) is Zariski-dense. So the rank of the matrix [plj ] is m−1 and
equation (3) has a solution(q1, . . . , qm) with q1 6= 0. Hence there existq1, . . . , qm ∈ Uq(h)

with q1 6= 0 such thateβk

∑m
j=1 vjqj ≡ 0 modUq(g)k+ for all k = 1, . . . , r.

Let p be an irreducible factor ofq1. If p(qλ) = 0 for λ satisfying (∗), then by the
uniqueness of the solution we getqj (q

λ) = 0 for all j . Using Hilbert’sNullstellensatzwe
see thatp is also a factor of eachqj , and so there is a solution of (3), such thatq1(q

λ) 6= 0
for all λ satisfying (∗). Now let (q1, . . . , qm) be a solution of (3) such that theqi ’s have no
common irreducible factors. Now we have proved the theorem withui = q1. �

Let S0
q (g, k) ⊂ Sq(g, k) be the subalgebra generated bysµi

’s andUq(h).

Remark. In practice, the stepssµi
can be constructed by straightforward computation. For

the quantum algebra pairsUq(sl(n − 1)) ⊂ Uq(sl(n)) it has been done in [6].

3.3. Uq(k)-finite Uq(g)-modules

Let 3 ⊂ h∗ be the set of integral weights, i.e. the weights for which〈λ|αj 〉 ∈ Z, j = 2, . . . , n

and let� be the set of weights of the formω = ε · qλ, λ ∈ 3 and ε4
i = 1. We define a

partial ordering in� by settingε · qµ < ε · qλ if the first non-zero element in the sequence
〈λ − µ|α2〉, . . . , 〈λ − µ|αn〉 is positive.

Uq(g)-moduleV is Uq(k)-finite if it is a sum of irreducible finite-dimensionalUq(k)-
modules. LetV ω be the sum of all irreducibleUq(k)-submodules with highest weight
ω ∈ �+. We denote byV + ⊂ V the subspace which is annihilated byk+ and
V +

ω = V + ∩ V ω.
Let D be the commutant ofUq(h) in S0

q (g, k). Now V + is anSq(g, k)-module andV +
ω

a D-module in a natural way.

Theorem 3. If V is an irreducibleUq(k)-finite Uq(g) module and 06= v ∈ V +, then
V + = S0

q (g, k)v.
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Proof. BecauseV is irreducible we need to show thatV ′ = Uq(k−)S0
q (g, k)v is Uq(g)-

invariant. For this it is sufficient to show that for anyv′ ∈ V ′, eµk
v′ ∈ V ′ for

k = 1, . . . , 2p + 1.

Let v′ = usv ∈ V ′, u ∈ Uq(k−), s ∈ S0
q (g, k). Using the commutation relations of

Cartan–Weyl generators we see that

eµk
v′ =

2p+1∑
i=1

uieµi
sv ui ∈ Uq(k−).

So we need only show thateµi
v′ ∈ V ′ for any v′ ∈ S0

q (g, k)v. We do this by induction.
Clearly we may takesµ2p+1 = eµ2p+1 so

eµ2p+1v
′ = sµ2p+1v

′.

Assume thateµi
v′ ∈ V ′ for all i > k. Becausev′ ∈ V + we may assume thatv′ has weight

qλ with λ ∈ 3+.
If λ + µk ∈ 3+, then by theorem 2

eµk
uk(q

λ)v′ = sµk
v′ −

∑
j>k

vjkujk(q
λ)eµj

v′

whereuk(q
λ) 6= 0 andvjk ∈ Uq(k−); so eµk

v′ ∈ V ′.
If λ + µk /∈ 3+, then

eµk
v′ ∈

∑
j>k

Uq(k−)eµj
v′ = Lk+1.

Otherwiseeµk
v′+Lk+1 would be a highest weight vector of finite-dimensionalUq(k)-module

Lk/Lk+1 with weight qλ+µk ; a contradiction. �
For eachω ∈ �+, let Mω = {u ∈ Uq(g)|uV +

ω ⊂ V +
ω′ for someω′ < ω}. Denote

Dω = D/D ∩ Uq(g)Mω. V ω is a minimal component of aUq(g)-moduleV if V ω 6= {0}
andV ω′ = 0 for all ω′ < ω, ω′ ∈ �+. If V ω is a minimal component ofV , thenV +

ω is a
Dω-module in a natural way. It follows from our choice of the partial ordering in� that
any irreducibleUq(k)-finite Uq(g)-module has a unique minimal component.

In [6] we have proved the following theorem.

Theorem 4. The mapV 7→ V +
ω gives a (1–1)-correspondence between the setR(ω) of

equivalence classes of irreducibleUq(k)-finite Uq(g)-modules with a minimal component
V ω and the set T(ω) of equivalence classes of irreducibleDω-modules.

This theorem is useful when classifying theUq(k)-finite Uq(g)-modules since it is
usually quite simple to determine the structure ofDω. In [6] we have done it in the
Uq(sl(n− 1)) ⊂ Uq(sl(n)) case. There we have used the explicit forms of the elementssµi

.
However, that is probably not necessary, since methods analogous to those used in [11] can
obviously also be used in theq-deformed case.
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